Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions

Mohammad Shahriari

Department of Mathematics, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran
E-mail: shahriari@tabrizu.ac.ir, shahriari@maragheh.ac.ir

Abstract

This paper deals with the boundary value problem involving the differential equation
\[\ell y := -y'' + q y = \lambda y, \]
subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions
\[y(d + 0) = ay(d - 0), \quad y'(d + 0) = ay'(d - 0) + by(d - 0). \]

In this problem \(q(x), d, a, b \) are real, \(q \in L^2(0, \pi), d \in (0, \pi) \) and \(\lambda \) is a parameter independent of \(x \). By defining a new Hilbert space and using spectral data of a kind, it is developed the Hochestadt’s result based on transformation operator for inverse Sturm-Liouville problem with parameter dependent boundary and discontinuous conditions. Furthermore, it is established a formula for \(q(x) - \tilde{q}(x) \) in the finite interval, where \(\tilde{q}(x) \) is an analogous function with \(q(x) \).

Keywords. Inverse Sturm-Liouville problem; Jump conditions; Green’s function; Eigenparameter dependent condition; Transformation operator.

2010 Mathematics Subject Classification. 34B24, 34B20, 47A05, 47A10.

1. INTRODUCTION

We consider the boundary value problem
\[\ell y := -y'' + q y = \lambda y, \]
subject to the parameter dependent boundary conditions
\[
U(y) := \lambda(y'(0) + h_1 y(0)) - h_2 y'(0) - h_3 y(0) = 0, \\
V(y) := \lambda(y'(\pi) + H_1 y(\pi)) - H_2 y'(\pi) - H_3 y(\pi) = 0,
\]

Received: 22 February 2014; Accepted: 8 January 2015.
and the jump conditions
\[
U_1(y) := y(d + 0) - ay(d - 0) = 0, \\
U_2(y) := y'(d + 0) - ay'(d - 0) - by(d - 0) = 0,
\]
where \(q(x) \) is real function in \(\in L^2[0, \pi] \), \(h_i, H_i, (i = 1, 2, 3) \), \(a, b \), and \(d \) are real with \(d \in (0, \pi) \). \(r_1 := h_3 - h_1 h_2 > 0 \) and \(r_2 := H_1 H_2 - H_3 > 0 \). For simplicity we use the notation \(L = L(q; h_i; H_i; d) \) for the problem (1.1)–(1.3). Here \(\lambda \) is the spectral parameter.

In this paper, we study the inverse Sturm-Liouville problems. The inverse Sturm-Liouville problems can be regarded as three aspects, e.g., existence, uniqueness and reconstruction of the potential function \(q \) from given spectral data. These problems originated in the work of Ambarzumian(1929) [3], were continued by Borg(1945) [7], and have been gradually elucidated over the past seventy years. Here we want to look at the question of uniqueness for the above problem using two set of spectra, or one spectrum plus part of a set of value of eigenfunctions at some interior point. Such kind of problems have a long tradition and we refer the reader to [3–7], [9–16], [18–22], [25, 27, 29, 31, 32], [34–38], and the references therein. In particular, the operator \(\ell \) plays an important role as the one-dimensional Schrödinger operator in quantum mechanics and our transmission conditions include the case of point interactions (see e.g. the monographs [2, 33]). In this manuscript, we generalize the Hochstadt’s result [13], refining the approach of Levinson [25] for eigenparameter dependent boundary conditions for Sturm-Liouville operator to show that precisely how much \(q \) has freedom where the \(\lambda_n' \) and all but finitely many of the \(\lambda_n \) are specified. Note that the eigenvalues \(\lambda_n' \) is obtained with replacing \(H_i \) by \(\delta_i \) in (1.2). There are many papers concerning problems with discontinuous conditions. One can find the similar works for discontinuous conditions in [4, 12, 17, 18, 32, 34–36, 38]. The similar works for Hochstadt’s result in [6, 20, 21, 30]. Nowadays there are several number of papers devoted to inverse problems for the Sturm-Liouville operator with eigenparameter dependent boundary conditions in [5, 11, 17, 30, 36, 37].

In section 2 we define a new Hilbert space for the eigenparameter dependent boundary conditions for the Sturm-Liouville operator by using similar techniques as in [1, 28], to obtain the asymptotic form of solutions and eigenvalues. In section 3 we formulate a novel inverse Sturm-Liouville problem based on transformation operator.
2. **The Hilbert space formulation and asymptotic form of solutions and eigenvalues**

In this section, we introduce the special inner product in the Hilbert space $(L_2(0, d) \oplus L_2(d, \pi)) \oplus \mathbb{C}^2$ and we define a linear operator A in it such that the problem (1.1)–(1.3) can be interpreted as the eigenvalue problem of A. So, we define a new Hilbert space inner product on $H := (L_2(0, d) \oplus L_2(d, \pi)) \oplus \mathbb{C}^2$ by

$$
(F, G)_H := |a| \int_0^{d-0} f \bar{g} + \frac{1}{|a|} \int_{d+0}^{\pi} f \bar{g} + \frac{|a|}{r_1} f_1 \bar{g}_1 + \frac{1}{r_2|a|} f_2 \bar{g}_2,
$$

where $F(x) = \begin{pmatrix} f(x) \\ f_1 \\ f_2 \end{pmatrix}$ and $G(x) = \begin{pmatrix} g(x) \\ g_1 \\ g_2 \end{pmatrix} \in H$ and we let

$$
R_1(u) := u'(0) + h_1 u(0), \quad R_1'(u) := h_2 u(0) + h_3 u'(0),
$$

$$
R_2(u) := u'(\pi) + H_1 u(\pi), \quad R_2'(u) := H_2 u(\pi) + H_3 u'(\pi).
$$

In this Hilbert space we construct the operator

$$
A : H \to H,
$$

with domain

$$
D(A) = \left\{ F = \begin{pmatrix} f(x) \\ f_1 \\ f_2 \end{pmatrix} \in AC[0, d] \cup (d, \pi] \text{ and,} \right. \\
\left. \begin{array}{l}
\ell f \in L^2[0, d] \cup (d, \pi]) \\
U(f) = U_1(f) = U_2(f) = 0, \quad f_1 = R_1(f), \quad f_2 = R_2(f) \\
f(d \pm 0), \quad f'(d \pm 0) \text{ is defined,} \quad \ell f \in L^2[0, d] \cup (d, \pi] \right\},
$$

by action law

$$
AF = \begin{pmatrix} \ell f \\ R_1'(f) \\ R_2'(f) \end{pmatrix} \quad \text{with} \quad F = \begin{pmatrix} f(x) \\ R_1(f) \\ R_2(f) \end{pmatrix} \in D(A),
$$

thus, we can change the boundary value problem (1.1)-(1.3) as following form

$$
AY = \lambda Y, \quad Y := \begin{pmatrix} y(x) \\ R_1(y) \\ R_2(y) \end{pmatrix} \in D(A),
$$

in the Hilbert space H. It is easy to verify that the eigenvalues of the operator A coincide with those of the problem (1.1)-(1.3).
Theorem 2.1. *The operator A is self-adjoint.*

Proof. We omit the proof, since the arguments are the same as in [1,28]. □

Suppose that the functions $\varphi(x,\lambda)$ and $\psi(x,\lambda)$ are solutions of (1.1) under the initial conditions

$$
\varphi(0,\lambda) = h_2 - \lambda, \quad \varphi'(0,\lambda) = \lambda h_1 - h_3,
$$

(2.5)

and

$$
\psi(\pi,\lambda) = H_2 - \lambda, \quad \psi'(\pi,\lambda) = \lambda H_1 - H_3,
$$

(2.6)

and the jump conditions (1.3). By attaching a subscript 1 or 2 to the functions φ and ψ, we mean to refer to the first subinterval $[0,d)$ or to the second subinterval $(d,\pi]$. By virtue of [1] problem (1.1) under the initial conditions (2.5) or (2.6) has a unique solution $\varphi_1(x,\lambda)$ or $\psi_2(x,\lambda)$, which is an entire function of $\lambda \in \mathbb{C}$ for each fixed point $x \in [0,d)$ or $x \in (d,\pi]$. From the linear differential equations we obtain the Wronskians

$$
\Delta_1(\lambda) := W(\varphi_1(x,\lambda),\psi_1(x,\lambda)),
$$

(2.7)

and

$$
\Delta_2(\lambda) := W(\varphi_2(x,\lambda),\psi_2(x,\lambda)),
$$

(2.8)

are independent on $x \in [0,d) \cup (d,\pi]$. By using the jump conditions we obtain $\Delta_2(\lambda) = a^2 \Delta_1(\lambda)$, for each $\lambda \in \mathbb{C}$.

Corollary 2.2. *The zeros of $\Delta(\lambda) := \Delta_2(\lambda) = a^2 \Delta_1(\lambda)$ coincide, and the eigenvalues of the problem with the zeros (1.1)–(1.3) coincide with the zeros of the function $\Delta(\lambda)$.***

Corollary 2.3. *By self-adjointness of A and Corollary 2.2, all eigenvalues of the problem (1.1)–(1.3) are real and simple.*

Theorem 2.4. *Let $\lambda = \rho^2$ and $\tau := \text{Im} \rho$. For equation (1.1) with spectral parameter dependent boundary conditions (1.2) and jump conditions (1.3) as $|\lambda| \to \infty$, the following asymptotic formulas hold:

$$
\varphi(x;\lambda) = \begin{cases}
\rho^2 \cos \rho x + \rho(-h_1 + \frac{1}{2} \int_0^x q(t) \, dt) \sin \rho x + O(\exp(|\tau x|)), & x < d, \\
\rho a \rho^2 \cos \rho x + \rho (f_1(x) \sin \rho x + f_2(x) \sin \rho (2d - x)) \\
+ O(\exp(|\tau x|)), & x > d,
\end{cases}
$$

(2.9)
\[\varphi'(x; \lambda) = \begin{cases} -\rho^3 \sin \rho x + \rho^2 (-h_1 + \frac{1}{2} \int_0^x q(t) dt) \cos \rho x + O(\rho \exp(|\tau x|)), & x < d, \\ -a \rho^3 \sin \rho x + \rho^2 (f_1(x) \cos \rho x - f_2(x) \cos (2d - x)) + O(\rho \exp(|\tau x|)), & x > d, \end{cases} \] (2.10)

and

\[\psi(x; \lambda) = \begin{cases} \frac{1}{a} \rho^3 \cos \rho(\pi - x) + \rho (g_1(x) \sin \rho(\pi - x) + g_2(x) \sin (2d + x - \pi)) + O(\rho \exp(|\tau(\pi - x)|)), & x < d, \\ \rho^2 \cos \rho(\pi - x) + \rho (H_1 + \frac{1}{2} \int_{\pi - x}^\pi q(x) dx) \sin \rho(\pi - x) + O(\rho \exp(|\tau(\pi - x)|)), & x > d, \end{cases} \] (2.11)

where

\[f_1(x) = a \left(-h_1 + \frac{1}{2} \int_0^x q(t) dt \right) + \frac{b}{2}, \quad f_2(x) = \frac{b}{2}, \]

\[g_1(x) = \frac{1}{a} \left(H_1 + \frac{1}{2} \int_{\pi - x}^\pi q(t) dt \right) - \frac{b}{2a^2}, \quad g_2(x) = -\frac{b}{2a^2}. \]

The characteristic function is

\[\Delta(\lambda) = -a \rho^5 \sin \rho \pi + \rho^4 \left[(f_1(\pi) + aH_1) \cos \rho \pi - f_2(\pi) \cos (2d - \pi) \right] + O(\rho^5 \exp(|\tau|)). \] (2.13)

Proof. Suppose \(C(x, \lambda) \) and \(S(x, \lambda) \) are the solutions of (1.1) with the initial conditions

\[C(0, \lambda) = 1, \quad C'(0, \lambda) = 0 \] and \(S(0, \lambda) = 0, \quad S'(0, \lambda) = 1, \) and the jump conditions (1.3). Clearly

\[\varphi(x, \lambda) = (\lambda - h_2)C(x, \lambda) + (h_3 - \lambda h_1)S(x, \lambda). \]
The arguments for obtaining the asymptotic formulas of $S(x, \lambda)$ and $C(x, \lambda)$ are similar to that of [38]. Note that by changing x to $\pi - x$ one can obtain the asymptotic form of $\psi(x, \lambda)$ and $\psi'(x, \lambda)$. \hfill \Box

By applying the similar calculations of [1,38], we find that

$$\rho_n = n - 2 + \frac{\theta_n}{n} - \frac{\kappa_n}{n},$$

(2.14)

where

$$\kappa_n = o(1), \quad \theta_n = \frac{(-1)^{(n+1)}}{2} (\omega_1 + \omega_2 \cos 2d(n-2)), $$

and

$$\omega_1 = a \left(H_1 + h_1 - \frac{1}{2} \int_0^\pi q(t) dt \right) - \frac{b}{2}, \quad \omega_2 = -\frac{b}{2}.$$

3. Main results

In this section the uniqueness theorem for Eqs. (1.1)-(1.3) is given. We need some lemma and technical notation to prove our main result. The boundary value problem $L = L(q; h; H_1; d)$ is defined with the operator $A : \mathcal{H} \to \mathcal{H}$. We now consider boundary value problems $\tilde{L} := L(\tilde{q}; \tilde{h}; H_1; d)$, $L_1 := L(q; h; \delta_1; d)$, and $\tilde{L}_1 := L(\tilde{q}; \tilde{h}; \delta_1; d)$, for $i = 1, 2, 3$, by the same approach with operators \tilde{A}, A_1, and \tilde{A}_1 respectively, where $\delta_1 \neq H_1$. Suppose that $\theta(x, \lambda)$ is the solution of (1.1) satisfying in the initial conditions $\theta(\pi, \lambda) = \delta_2 - \lambda$, $\theta'(\pi, \lambda) = \lambda \delta_1 - \delta_3$ and the jump conditions (1.3). Define $\phi_j(\lambda) := W(\varphi_j(x, \lambda), \theta_j(x, \lambda))$, and $\tilde{\phi}_j(\lambda) := W(\tilde{\varphi}_j(x, \lambda), \tilde{\theta}_j(x, \lambda))$, for $j = 1, 2$.

Lemma 3.1. If $L(q; h; \delta_1; d)$ and $L(\tilde{q}; \tilde{h}; \delta_1; d)$, $(i = 1, 2, 3)$, have the same eigenvalues, then $\phi_j(\lambda) = \tilde{\phi}_j(\lambda)$, for $j = 1, 2$.

Proof. From [8] it follows that ϕ and $\tilde{\phi}$ are entire functions of order $\frac{1}{2}$, and consequently, using Hadamard’s factorization theorem [23] are determined up to a multiplicative constant by their zeros. Hence there is a constant k such that $k = \frac{\tilde{\phi}_j(\lambda)}{\phi_j(\lambda)}$. Using the asymptotic form of $\phi_j(\lambda)$ and $\tilde{\phi}_j(\lambda)$ as a similar form of (2.13) with H_1 replaced by δ_1, we obtain $k = 1 + O\left(\frac{1}{\rho}\right)$. Letting $\rho \to \infty$, we obtain $k = 1$ and so $\phi_j(\lambda) = \tilde{\phi}_j(\lambda)$. \hfill \Box

If $\psi_n(x) := \psi(x, \lambda_n)$ is another eigenfunction of L satisfying in the initial conditions (2.6), then $\varphi_n(x)$ and $\psi_n(x)$ are linearly dependent for $n \in \mathbb{N}$. So, we have

$$\psi_n(x) = k_n \varphi_n(x), \quad x \in [0, d) \cup (d, \pi],$$

(3.1)
where k_n is a real number. Define $\tilde{\varphi}_n(x)$, $\tilde{\psi}_n(x)$ and \tilde{k}_n in a similar manner. From this on, we assume that $\Lambda_0 \subseteq \mathbb{N}$ is a finite set and $\Lambda = \mathbb{N}\setminus\Lambda_0$.

Lemma 3.2. If L_1 and \tilde{L}_1 have the same eigenvalues and, as well as, $\lambda_n = \tilde{\lambda}_n$ for all $n \in \Lambda$, where λ_n and $\tilde{\lambda}_n$ are the eigenvalues of L and \tilde{L}, respectively, then $k_n = \tilde{k}_n$ for all $n \in \Lambda$.

Proof. Define $\delta_j(\lambda) := W(\psi_j(x, \lambda), \theta_j(x, \lambda))$. It is easy to see that $\delta_j(\lambda)$ is independent of x. From definition of ϕ, θ and ψ it follows that

$$\varphi_{jn}(x) = \frac{\psi_{jn}(x)\phi_j(\lambda_n)}{\delta_j(\lambda_n)}, \quad \varphi'_{jn}(x) = \frac{\psi'_{jn}(x)\phi_j(\lambda_n)}{\delta_j(\lambda_n)}.$$ \hfill (3.2)

Similarly we obtain

$$\tilde{\varphi}_{jn}(x) = \frac{\tilde{\psi}_{jn}(x)\tilde{\phi}_j(\tilde{\lambda}_n)}{\delta_j(\tilde{\lambda}_n)}, \quad \tilde{\varphi}'_{jn}(x) = \frac{\tilde{\psi}'_{jn}(x)\tilde{\phi}_j(\tilde{\lambda}_n)}{\delta_j(\tilde{\lambda}_n)}.$$ \hfill (3.3)

From $\lambda_n = \tilde{\lambda}_n$ for all $n \in \Lambda$ and Lemma 3.1, we have $\phi_j \equiv \tilde{\phi}_j$. From definition of $\delta_j(\lambda)$ it follows that

$$\delta_2(\lambda_n) = \delta_2(\lambda_n)|_{x=\pi} = \lambda_n^2(H_1 - \delta_1) + \lambda_n(H_2\delta_1 - \delta_2H_1 + \delta_3 - H_3) + H_3\delta_2 - H_2\delta_3.$$ \hfill (3.4)

Thus

$$k_n = \tilde{k}_n = \frac{\lambda_n^2(H_1 - \delta_1) + \lambda_n(H_2\delta_1 - \delta_2H_1 + \delta_3 - H_3) + H_3\delta_2 - H_2\delta_3}{\phi_2(\lambda_n)}$$

for all $n \in \Lambda$. \hfill \square

Assume that λ is not in the spectrum of (1.1)–(1.3) and let

$$S_\lambda := (A - \lambda I)^{-1}|_D.$$ \hfill (3.5)

Replace A by \tilde{A} and define \tilde{S}_λ analogously.

We consider the following spaces

$$K := D(A) \ominus \{\Phi_m : m \in \Lambda_0\},$$ \hfill (3.6)

$$\tilde{K} := D(\tilde{A}) \ominus \{\tilde{\Phi}_m : m \in \Lambda_0\}.$$
Define the transformation operator $T : K \to \tilde{K}$ by

$$T\Phi_n = \tilde{\Phi}_n,$$

(3.7)

where $\Phi_n = \begin{pmatrix} \varphi_n(x) \\ R_1(\varphi_n) \\ R_2(\varphi_n) \end{pmatrix}$ and $\tilde{\Phi}_n = \begin{pmatrix} \tilde{\varphi}_n(x) \\ R_1(\tilde{\varphi}_n) \\ R_2(\tilde{\varphi}_n) \end{pmatrix}$ for $n \in \Lambda$. By using the asymptotic form of solutions (2.11) and (2.12), it is easy to verify that T is a bounded operator. From (2.4) we have

$$(\lambda I - A)\Phi_n = (\lambda - \lambda_n)\Phi_n,$$

thus we obtain

$$\frac{\Phi_n}{(\lambda - \lambda_n)} = -S_\lambda \Phi_n.$$

A similar relation is obviously valid for $\tilde{\Phi}_n$.

Lemma 3.3. The relation $\tilde{S}_\lambda T = TS_\lambda$ holds for $\lambda \neq \lambda_n, \tilde{\lambda}_n$ and $n \in \mathbb{N}$.

Proof. Let $F \in K$, then we can expand F in terms of the set Φ_n

$$F(x) = \begin{pmatrix} f(x) \\ R_1(f) \\ R_2(f) \end{pmatrix} = \sum_{\Lambda} f_n \Phi_n(x),$$

(3.8)

for $n \in \Lambda$, where $f_n = \frac{\langle F, \Phi_n \rangle_H}{\langle \Phi_n, \Phi_n \rangle_H}$. Let λ be in complex plane which is not an eigenvalue of $A(q; h; H; d)$, then the operator S_λ exists and can be written as

$$-S_\lambda F(x) = \sum_{\Lambda} \frac{f_n}{\lambda - \lambda_n} \Phi_n(x).$$

(3.9)

If we apply T to the above relation, we obtain

$$-TS_\lambda F(x) = \sum_{\Lambda} \frac{f_n}{\lambda - \lambda_n} \tilde{\Phi}_n(x).$$

If we apply \tilde{S}_λ and T to (3.8) respectively, we obtain

$$-\tilde{S}_\lambda TF(x) = \sum_{\Lambda} \frac{f_n}{\lambda - \lambda_n} \tilde{\Phi}_n(x).$$

Then we get

$$\tilde{S}_\lambda T = TS_\lambda.$$
Theorem 3.4. If \(A(q; h_1; \tilde{\mathcal{S}}_1; d) \) and \(A(\tilde{q}; h_1; \mathcal{S}_1; d) \) have the same spectrum and \(\lambda_n = \tilde{\lambda}_n \) for all \(n \in \Lambda \), then

\[
q(x) - \tilde{q}(x) = \begin{cases}
\sum_{\lambda_0} (\tilde{y}_{1n}\varphi_{1n})(x), & x < d, \\
\sum_{\lambda_0} (\tilde{y}_{2n}\varphi_{2n})(x), & x > d,
\end{cases}
\]

a.e. on \([0, d) \cup (d, \pi] \), where \(\tilde{y}_{in} \) and \(\varphi_{in} \) for \(i = 1, 2 \) are suitable solutions of \(\tilde{y} = \lambda_n y \) and \(\tilde{y} = \lambda_n y \), respectively.

Proof. By using the same techniques of [1] for \(-S_x \Phi_n = G_n \), where \(G_n(x) = (g_n(x), R_1(g_n), R_2(g_n))^T \in \mathcal{H} \), by simple calculation we can show that the relation

\[
g''_n(x) + (\lambda - q(x))g_n(x) = \varphi_n(x), \quad x \in (0, d) \cup (d, \pi),
\]

(3.11)

and

\[
\lambda(g'_n(0) + h_1g_n(0)) - h_2g'_n(0) - h_3g_n(0) = 0,
\]

(3.12)

\[
\lambda(g'_n(\pi) + H_1g_n(\pi)) - H_2g'_n(\pi) - H_3g_n(\pi) = 0,
\]

(3.13)

are satisfied. The equation (3.11) with (3.12) and (3.13) has the unique solution (i.e. \(g_n(x) \)), which can be represented as

\[
g_n(x) = \begin{cases}
\psi_1(x, \lambda) \int_0^x \varphi_1(t, \lambda)\varphi_{1n}(t)dt + \frac{\psi_2(x, \lambda)}{2(\lambda)} \left(\int_0^x f^\varphi_1(t, \lambda)\varphi_{1n}(t)dt \right), & 0 < x < d, \\
\psi_2(x, \lambda) \left(a^2 \int_0^x f^\varphi_1(t, \lambda)\varphi_{1n}(t)dt + \int_0^x f^\varphi_2(t, \lambda)\varphi_{2n}(t)dt \right), & 0 < x < d, \\
\psi_2(x, \lambda) \int_x^\pi f^\varphi_2(t, \lambda)\varphi_{2n}(t)dt, & d < x < \pi.
\end{cases}
\]

(3.14)

By considering

\[
G(x, t, \lambda) = \begin{cases}
|a| \frac{\psi(x, \lambda)\varphi(t, \lambda)}{\Delta(\lambda)} \varphi(t, \lambda), & 0 \leq t \leq x \leq \pi, \\
|a| \frac{\psi(x, \lambda)\varphi(t, \lambda)}{\Delta(\lambda)} \varphi(t, \lambda), & 0 \leq x \leq t \leq \pi,
\end{cases}
\]

(3.15)
where $x \neq d$ and $t \neq d$ the formula (3.14) reduces to

$$G_n(x) = \left(\frac{g_n(x)}{R_1(g_n)} \right) = \left(\begin{array}{c} |a| \int_0^d \varphi_n(t) dt + \int_0^d \frac{\psi_n(t)}{R_2(g_n)} \varphi_n(t) dt \\ \lambda - \lambda_n \end{array} \right)$$

(3.16)

and the function $G(x, t, \lambda)$ is as defined in (3.15). Using the asymptotic form of

$$\varphi(x, \lambda), \psi(x, \lambda), \Delta(\lambda)$$

for sufficiently large ρ and $\rho \neq \rho_n$, we deduce that the Green’s function $G(x, t, \lambda)$ is bounded. $G(x, t, \lambda)$ is a meromorphic function with the eigenvalues λ_k as its poles [1]. Let C_n be a sequence of circles about the origin intersecting the positive λ-axis between λ_n and λ_{n+1}. We have

$$\lim_{n \to \infty} \int_{C_n} \frac{G(x, t, \mu)}{\lambda - \mu} d\mu = 0, \quad \lambda \in \text{int } C_n.$$

(3.17)

From residue integration, it follows that

$$\frac{1}{2\pi i} \int_{C_n} \frac{G(x, t, \mu)}{\lambda - \mu} d\mu = -G(x, t, \lambda) + \sum_{i=0}^{n} \frac{\varphi_i(x <) \psi_i(x >)}{\Delta(\lambda_i)(\lambda - \lambda_i)},$$

(3.18)

where $\Delta(\lambda_i) = \frac{d}{d\lambda} \Delta(\lambda)|_{\lambda = \lambda_i}$. From (3.17), (3.18) and the Mittag-Leffler expansion for $G(x, t, \lambda)$ we obtain

$$G(x, t, \lambda) = \sum_{i=0}^{\infty} \frac{\varphi_i(x <) \psi_i(x >)}{\Delta(\lambda_i)(\lambda - \lambda_i)},$$

(3.19)

where for simplicity $x := \min\{x, t\}$ and $x := \max\{x, t\}$ and $\varphi_i(x <), \psi_i(x >)$ are eigenfunctions corresponding to the eigenvalues λ_i, therefore for $(f(x), R_1(f), R_2(f))^T \in K$, from (3.5), (3.15), (3.16), and Lemma 3.2 we have
By applying T to both sides of (3.20), we see that

$$T S_A F(x) = \begin{cases}
\sum_{\lambda} k_{\lambda} \psi_{1n}(x) \left[a^2 f_0^{d} \psi_{1n}(t) f(t) dt + \int_{0}^{\pi} \psi_{2n}(t) f(t) dt \right], & 0 \leq x < d, \\
\sum_{\lambda} k_{\lambda} \psi_{2n}(x) \left[a^2 f_0^{d} \psi_{1n}(t) f(t) dt + \int_{0}^{\pi} \psi_{2n}(t) f(t) dt \right], & d < x \leq \pi,
\end{cases}$$

(3.21)

Define

$$U(x) := \begin{cases}
\frac{a^2 \psi_1(x) f_0^{d} \psi_1(t) f(t) dt + \int_{0}^{\pi} \psi_2(t) f(t) dt}{\Delta(\lambda)}, & 0 \leq x < d, \\
\frac{\psi_2(x) \left[a^2 f_0^{d} \psi_1(t) f(t) dt + \int_{0}^{\pi} \psi_2(t) f(t) dt \right] + \check{\psi}_2(x) \int_{0}^{\pi} \psi_2(t) f(t) dt}{\Delta(\lambda)}, & d < x \leq \pi,
\end{cases}$$

(3.22)
By the Mittag-Leffler expansion for $U(x)$, we have

$$U(x) = \left\{ \begin{array}{ll}
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,}
\end{array} \right\}. $$

The second term of the above expression is $TS_A F$, as given in (3.21), in the first term, $\tilde{w}_n(x)$ represents $\psi(x)$ and $\tilde{z}_n(x)$ represents $\tilde{\varphi}(x)$ evaluated at λ_n. Hence

$$\tilde{S}_\lambda TF(x) = U(x) - \left\{ \begin{array}{ll}
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,} & \\
\sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \varphi_2(x)}{x < d,}
\end{array} \right\}. $$

The right and left hand side of (3.23) is in the domain \tilde{S}_λ. Therefore, both sides of (3.23) are continuous. By using (3.20) and differentiation of the right-hand side of (3.23), for $0 \leq x < d$ we obtain

$$\begin{align*}
& a^2 \tilde{\varphi}_1'(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \tilde{\varphi}_2'(x) \left(a^2 \int_{0}^{x} \varphi_1(t) f(t) dt + \int_{0}^{x} \varphi_2(t) f(t) dt \right) \\
& - \sum_{n=0}^{\infty} \frac{a^2 \tilde{w}_n(x) \int_{0}^{x} \varphi_1(t) f(t) dt + \tilde{\tilde{z}}_n(x)}{x < d,} \left(a^2 \int_{0}^{x} \varphi_1(t) f(t) dt + \int_{0}^{x} \varphi_2(t) f(t) dt \right) \\
& + \tilde{\tilde{\varphi}}_1(x) \varphi_1(x) - \tilde{\tilde{\varphi}}_1(x) \varphi_1(x) \left(\tilde{\tilde{\varphi}}_1(x) + \tilde{\tilde{\varphi}}_1(x) \right) \left(\tilde{\tilde{\varphi}}_1(x) + \tilde{\tilde{\varphi}}_1(x) \right) f(x).
\end{align*}$$

An inspection of the term in the second set of braces shows that it vanishes identically. To do that, one merely computes the residue at each λ_n and observes that it becomes zero. One can differentiate the expression in the braces in the last expression and
then from (3.23) we obtain
\[
Tf(x) = \left[\frac{\dot{\psi}_1(x)\varphi_1(x) - \ddot{\psi}_1(x)\psi_1(x)}{\Delta(\lambda)} - \sum_{n>0} \frac{\dot{\psi}_{1n}(x)\varphi_{1n}(x) + \ddot{\psi}_{1n}(x)\psi_{1n}(x)}{\Delta(\lambda_n)(\lambda - \lambda_n)} \right] f(x)
- \sum_{n>0} \frac{a^2 \dot{\psi}_{1n}(x) \int_{0}^{x} \varphi_{1n}(t)f(t)dt + \ddot{\psi}_{1n}(x) \left(a^2 \int_{0}^{x} \varphi_{1n}(t)f(t)dt + \int_{0}^{x} \varphi_{2n}(t)f(t)dt \right) \Delta(\lambda_n)}{\Delta(\lambda_n)}.
\]
(3.24)

The operator T is independent of λ. To compute the value of the expression in the braces in (3.24) we let $\lambda \to \infty$. Using the asymptotic formulas, we see that the term in the braces reduces to unity. To simplify the second term in (3.24) we recall that
\[
\psi_{1n} = k_n\varphi_{1n}, \quad \psi_{2n} = k_n\varphi_{2n}
\]
and from (2.1),
\[
|a| \int_{0}^{d} \psi_{1n}(t)f(t)dt + \left| \frac{d}{|a|} \int_{d}^{\pi} \psi_{2n}(t)f(t)dt \right|
+ \frac{|a|}{r_1} R_1(\psi_{1n})R_1(f) + \frac{1}{r_2|a|} R_2(\psi_{2n})R_2(f) = 0.
\]

Then from (3.8), for $0 \leq x < d$ we get
\[
Tf(x) = f(x) - \frac{1}{2} \sum_{n=1}^{\infty} \bar{y}_{1n}(x) \int_{0}^{x} \varphi_{1n}(t)f(t)dt
+ \sum_{n=1}^{\infty} \frac{f_{n}k_n\bar{z}_{1n}(x)}{\Delta(\lambda_n)} \left(\frac{|a|}{r_1} R_1(\psi_{1n})R_1(\varphi_{1n}) + \frac{1}{r_2|a|} R_2(\psi_{2n})R_2(\varphi_{2n}) \right),
\]
(3.25)

where
\[
\frac{1}{2} \bar{y}_{1n}(x) = a^2 \frac{\ddot{\psi}_{1n}(x) - k_n\ddot{\psi}_{1n}(x)}{\Delta(\lambda_n)}.
\]

By applying the similar computation for $d < x \leq \pi$ we obtain
\[
Tf(x) = f(x) + \frac{1}{2} \sum_{n=1}^{\infty} \bar{y}_{2n}(x) \int_{0}^{\pi} \varphi_{2n}(t)f(t)dt
+ \sum_{n=1}^{\infty} \frac{f_{n}\bar{w}_{2n}(x)}{\Delta(\lambda_n)} \left(\frac{|a|}{r_1} R_1(\psi_{1n})R_1(\varphi_{1n}) + \frac{1}{r_2|a|} R_2(\psi_{2n})R_2(\varphi_{2n}) \right),
\]
where
\[
\frac{1}{2} \bar{y}_{2n}(x) = \frac{\ddot{\psi}_{2n}(x) - k_n\ddot{\psi}_{2n}(x)}{\Delta(\lambda_n)}.
\]

Now, from Lemma 3.3, we conclude that
\[
\dot{AT}F = TAF.
\]
(3.26)
Suppose that \(F = \Phi_n \) \((n \in \Lambda)\) then we get \(f_m = \frac{(\Phi_n, \Phi_m)_{\Lambda_0}}{(\Phi_n, \Phi_n)_{\Lambda_0}} = 0\), for \(m \in \Lambda_0 \). For left and right side of (3.26) we get

\[
\tilde{A} \Phi_n = \tilde{A} \left(\begin{array}{c}
\varphi_1 - \frac{1}{2} \sum_{\Lambda_0} \bar{y}_1_m \int_0^x \varphi_{1m}(t) \varphi_{1n}(t) dt, \quad 0 \leq x < d, \\
\varphi_2 + \frac{1}{2} \sum_{\Lambda_0} \bar{y}_2 m(x) \int_x^\pi \varphi_{2m}(t) \varphi_{2n}(t) dt, \quad d \leq x \leq \pi,
\end{array} \right)
\]

\[\begin{array}{c}
R_1(\tilde{\varphi}_n) \\
R_2(\tilde{\varphi}_n)
\end{array}\]

\[
= \left(\begin{array}{c}
-\varphi_1' + \bar{y}_1 \varphi_1 - \frac{1}{2} \sum_{\Lambda_0} \bar{y}_1 \int_0^x \varphi_{1m}(t) \varphi_{1n}(t) dt, \quad 0 \leq x < d, \\
-\varphi_2' + \bar{y}_2 \varphi_2 + \frac{1}{2} \sum_{\Lambda_0} \bar{y}_2 m(x) \int_x^\pi \varphi_{2m}(t) \varphi_{2n}(t) dt, \quad d \leq x \leq \pi,
\end{array} \right)
\]

\[\begin{array}{c}
R_1(\tilde{\varphi}_n) \\
R_2(\tilde{\varphi}_n)
\end{array}\]

and

\[
T \Phi_{1n} = \left(\begin{array}{c}
-\varphi_1' + \bar{y}_1 \varphi_1 - \frac{1}{2} \sum_{\Lambda_0} \bar{y}_1 \int_0^x \varphi_{1m}(t) \varphi_{1n}(t) dt, \quad 0 \leq x < d, \\
-\varphi_2' + \bar{y}_2 \varphi_2 + \frac{1}{2} \sum_{\Lambda_0} \bar{y}_2 m(x) \int_x^\pi \varphi_{2m}(t) \varphi_{2n}(t) dt, \quad d \leq x \leq \pi,
\end{array} \right)
\]

\[\begin{array}{c}
R_1(\tilde{\varphi}_n) \\
R_2(\tilde{\varphi}_n)
\end{array}\]

Note that

\[
\sum_{\Lambda_0} \bar{y}_1 m \int_0^\pi \varphi_{1m} \varphi_{1n} = \sum_{\Lambda_0} \bar{y}_1 m \int_0^\pi \lambda_m \varphi_{1m} \varphi_{1n}
\]

\[= \sum_{\Lambda_0} \lambda_m \bar{y}_1 m \int_0^\pi \varphi_{1m} \varphi_{1n}
\]

\[= \sum_{\Lambda_0} \bar{y}_1 m \int_0^\pi \varphi_{1m} \varphi_{1n}
\]
and
\[\sum_{\Lambda_0} \tilde{y}_{2m} \int_x^\pi \varphi_{2m} \tilde{\ell} \varphi_{2m} = \sum_{\Lambda_0} \tilde{\ell} \tilde{y}_{2m} \int_x^\pi \varphi_{2m} \varphi_{2m}. \]

Using (3.26) we find that
\[q(x) - \tilde{q}(x) = \begin{cases} \sum_{\Lambda_0} \tilde{y}_{1m} \varphi_{1m}', & 0 \leq x < d, \\ \sum_{\Lambda_0} \tilde{y}_{2m} \varphi_{2m}', & d < x \leq \pi. \end{cases} \]

\[\square \]

Corollary 3.5. If \(\Lambda_0 \) is empty, then \(T \) is a unitary operator and \(A = \tilde{A} \). Hence \(q = \tilde{q} \) in \(L^2(0, \pi) \).

4. **Conclusion**

In this paper, the inverse Sturm–Liouville problems with a transmission and parameter dependent boundary conditions was studied. For this purpose, a new Hilbert space by defining a new inner product for obtaining a self–adjoint operator was defined. So, the asymptotic form of solutions, eigenvalues and eigenfunctions of this problem was obtained. Finally, we formulated the Hochestadt’s result based on transformation operator for inverse Sturm–Liouville problems.

Acknowledgment

The author would like to acknowledge the referees for their careful reading of the manuscript and their constructive comments.

References

