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Abstract In this paper, inverse Laplace transform method is applied to analytical solution of
the fractional Sturm-Liouville problems. The method introduces a powerful tool for
solving the eigenvalues of the fractional Sturm-Liouville problems. The results show
that the simplicity and efficiency of this method.
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1. Introduction

Laplace transform has solved basic differential equations since the late eighteenth
century [8]. Modern problems, however, often require an extension of Laplace method
to more challenging settings. Laplace transform has been considered as a useful tool
to solve integer-order or relatively simple fractional-order differential [6, 9]. Inverse
Laplace transform is an important step in the application of Laplace transformation
technique in solving differential equations. The inverse Laplace transformation can
accomplished analytically according to its definition, or by using Laplace transform
tables. In this paper, we applied The inverse Laplace transform method for solving
fractional Sturm-Liouville problems. The aim of this paper is to present an efficient
and reliable treatment of the inverse Laplace transform method for solving fractional
Sturm-Liouville problems.
In this paper, we consider the following class of eigenvalue problems of the from

Dα[p(x)y
′

(x)] + λq(x)y(x) = 0, x ∈ (0, 1), 0 < α ≤ 1,

subject to

ay(0) + by
′

(0) = 0, cy(1) + dy
′

(1) = 0,
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where a, b, c, d ∈ R and q(x), p(x) > 0, q(x) and p(x) are smooth functions. Here Dα

denotes the fractional differential operator of order α.
Several authors have considered the numerical computational of such points, for exam-
ple Al-Mdallal [2] applied the Adomian decomposition method for solving fractional
Sturm-Liouville problems.
Abbasbandy [1] applied the Homotopy analysis method for solving fractional Sturm-
Liouville problems.
The paper is organized as follows: In section 2 we introduce some necessary defini-
tions and mathematical preliminaries of fractional calculus used for this study. Two
illustrative examples are documented in Section 3. The last Section includes our
conclusion.

2. Preliminaries

In this section, we give some definitions, notations and properties of fractional cal-
culus used in this work.

Definition 2.1 A function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if there
exists a real number p(> µ), such that f(x) = xpf1(x), which f1(x) ∈ C[0,∞), and
it is said to be in space Cm

µ if f (m) ∈ Cµ.
Definition 2.2 The left sided Riemann-Liouville fractional integral operator of or-
der α of a function fǫ Cµ, µ ≥ −1, is defined as [7]

Jαf(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)
1−α dt, α > 0, x > 0,

J0f(x) = f(x).

The Riemann-Liouville integral operator has the following properties

i) JαJβf(x) = JβJαf(x),

ii) JαJβf(x) = Jα+βf(x),

iii) Jαxγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ .

where f ∈ Cµ, µ ≥ −1, α, β ≥ 0 and γ > −1.
Definition 2.3 Let f ∈ Cm

−1, m ∈ N ∪ {0} then the Caputo’s fractional derivative
of f(x) is defined as [7]

Dαf(x) =

{

[Jm−αf (m)(x)] m− 1 < α < m, m ∈ N,
dmf(x)
dxm , α = m.

Definition 2.4 The Laplace transform of original function f(x) of a real variable
x, for x ≥ 0, is defined by the integral (if it exists)

F (s) = L{f(x)} =

∫

∞

0

f(x)e−sxdx,
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where parameters s is a complex number s = σ + iw.
The inverse Laplace transform is given by the following complex integral:

f(x) = L−1{F (s)} =
1

2πi
lim

T→∞

∫ γ+iT

γ−iT

esxF (s)ds,

where the integration is done the vertical line Re(s) = γ in the complex plane such
that γ is greater than the real part of all singularities of F (s) [3].
Definition 2.5 The Mittag-Leffler function plays a very important role in the so-
lution of fractional-order differential equations [4, 5].
More general Mittag-Leffler function with two parameters has the form

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
, z ∈ C, (2.1)

where α > 0, β > 0, C denote the complex plane and Γ(.) denote the Gamma function
[8].
The Laplace transform of the Mittag-Leffler function in two parameters is [10]

L{tβ−1Eα,β(−λtα)} =
sα−β

sα + λ
, (2.2)

where Res >| λ |
1

α .
Definition 2.6 The Laplace transform of the Capotu fractional derivative is defined
as [7]

L{Dαf(t)} = sαF (s)−

n−1
∑

k=0

s(α−k−1)f (k)(0), n− 1 < α ≤ n. (2.3)

3. Applications

In this section, two regular and singular fractional eigenvalue problems are solved
using the Laplace transform.
Example 1 Consider the regular fractional eigenvalue problem

D1/2y
′

(x) + λy(x) = 0, x ∈ (0, 1), (3.1)

with the boundary conditions

y
′

(0) = 0, (3.2)

and

y(1) = 0. (3.3)
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The Laplace transform (3.1) by using (2.3) yields

Y (s) =
bs1/2

s3/2 + λ
, (3.4)

where y(0) = b.
After taking inverse Laplace transform with respect to s in both sides of (3.4) and by
using (2.2)

y(x) = bE3/2,1(−λx3/2) = b

∞
∑

k=0

(−λx3/2)k

Γ(32k + 1)
. (3.5)

Now by (3.3) we have

b

∞
∑

k=0

(−λ)k

Γ(32k + 1)
= 0, b 6= 0. (3.6)

Finally by solving (3.6) by using maple we can find the eigenvalues.
Therefore, the first three eigenvalues are identified as follows

λ1 = 2.11027708, λ2 = 13.76538087, λ3 = 24.24337159.

The eigenfunctions corresponding to the above eigenvalues are shown in Fig 1.
Example 2 Consider the singular fractional eigenvalue problem
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D1/2y
′

(x) + (
1

x
+ λ)y(x) = 0, x ∈ (0, 1), (3.7)

whit the boundary conditions

y(0) = 0, (3.8)

and

y
′

(1) = 0. (3.9)

We have

xD1/2y
′

(x) + (1 + λx)y(x) = 0. (3.10)

By applying the Laplace transform to (3.10) gives

(s3/2 + λ)Y
′

(s) + (
3

2
s1/2 − 1)Y (s) =

−1

2
bs−3/2, (3.11)

where y
′

(0) = b. Now we assume

Y (s) =

∞
∑

k=0

aks
−k

2 . (3.12)

The solution of this first-order linear differential equation (3.11) by series (3.12) we
have

a0 = a1 = a2 = a3 = 0, a4 = 1, a5 = −1, a6 =
2

3
,

ak = −λak−3 −
2

k − 3
ak−1, k ≥ 7. (3.13)

By applying the inverse Laplace transform to (3.12) gives

y(x) =

∞
∑

k=0

ak

Γ(k2 )
x

k

2
−1. (3.14)

Now with the boundary conditions y
′

(1) = 0 and by using maple we can find the
eigenvalues.
Therefore, the first three eigenvalues are identified as follows

λ1 = 1.66091840, λ2 = 13.55041954, λ3 = 20.51439817.

The eigenfunctions corresponding to the above eigenvalues are shown in Figu 2.
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4. Conclusion

In this paper, We have proposed the analytical solution of the fractional Sturm-
Liouville problems. Inverse Laplace transformmethod has been applied to numerically
approximate the eigenvalues of the fractional Sturm-Liouville problems. The inverse
Laplace transform method proved to be very efficient for computing the eigenvalues
of the present problem.
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