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Abstract In this paper, the Chebyshev spectral collocation for one-dimensional lin-
ear hyperbolic telegraph equation is presented. Chebyshev spectral colloca-
tion method have become very useful in providing highly accurate solutions
to partial differential equations. A straightforward implementation of these
methods involves the use of spectral differentiation matrices. Firstly, we trans-
form telegraph equation to system of partial differential equations with initial
condition. Using Chebyshev differentiation matrices yields a system of or-
dinary differential equations. Secondly, we apply fourth order Runge-Kutta
formula for the numerical integration of the system of ODEs. Numerical re-
sults verified the high accuracy of the new method, and its competitive ability
compared with other newly appeared methods.
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1. Introduction

Consider one dimensional linear hyperbolic telegraph equation:

∂2u

∂t2
+ 2α

∂u

∂t
+ β2u =

∂2u

∂x2
+ f(x, t), (x, t) ∈ [0, 1]× [0, 1], α > β ≥ 0.

(1.1)

with initial conditions

u(x, 0) = f0(x),
∂u

∂t
(x, 0) = f1(x) (1.2)

and boundary conditions

u(0, t) = g0(t), u(1, t) = g1(t), t ≥ 0. (1.3)

Telegraph equation is commonly used in the study of wave propagation of elec-
tric signals in a cable transmission line and also in wave phenomena. Many
researchers have used various numerical and analytical methods to solve the
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Telegraph equation. Mohebbi and Dehaghan [19] studied high order compact
solution to solve the telegraph equation. Gao and Chi [13] used unconditionally
stable difference scheme for a one-space dimensional linear hyperbolic equa-
tion. Saadatmandi and Dehghan [20] developed a numerical solution based
on Chebyshev Tau method. The authors of [22] used Legendre multiwavelet
Galerkin method for solving the hyperbolic telegraph equation. Dehghan and
Ghesmati [10] developed a numerical approach based on the truly meshless
local weakstrong (MLWS) methods to deal with the second order two-space-
dimensional telegraph equation. To solve the telegraph equation using the
MLWS method, the conventional moving least squares (MLS) approximation
is exploited in order to interpolate the solution of the equation. A time step-
ping scheme is employed to approximate the time derivative. Das and Gupta
[9] used homotopy analysis method for solving fractional hyperbolic partial
differential equations. By using initial values, the explicit solutions of tele-
graph equation for different particular cases have been derived. Abdou [1]
used Adomian decomposition method for solving the telegraph equation in
charged particle transport. The Authors of [15] developed a numerical tech-
nique for the solution of second order one dimensional linear hyperbolic equa-
tion. The method consists of expanding the required approximate solution as
the elements of interpolating scaling functions. In their technique, by using
the operational matrix of derivatives , they reduced the problem to a set of
algebraic equations. Mohanty [17, 18] made investigations on the one-space-
dimensional hyperbolic equations.

In [17], Mohanty carried over a new technique to solve the linear one-space-
dimensional hyperbolic Eq. (1.1), which is unconditionally stable and is of
second-order accuracy in both the time and space components. Also this au-
thor proposed in [18] a three level implicit unconditionally stable difference
scheme [16] of second-order accuracy in both time and space variables for the
solution of (1.1) with variable coefficients such that fictitious points are not
needed at each time step along the boundary. Homotopy analysis method is
developed in [14] to solve fractional IVPs. Borhanifar and Abazari [5] devel-
oped an unconditionally stable parallel difference scheme for telegraph equa-
tion. A numerical scheme is developed in [11] to solve the one-dimensional
hyperbolic telegraph equation using collocation points [11] and approximating
the solution using a thin plate splines radial basis function. Another numerical
method is presented in [12] to solve the one-dimensional hyperbolic telegraph
equation using Chebyshev cardinal functions. Also several test problems are
given and the results of numerical experiments are compared with analytical
solutions to confirm the good accuracy of the presented scheme. Differential
transform method [4] is considered to solve telegraph equation. Using differ-
ential transform method, it is possible to find the exact solution or a closed



18 M. JAVIDI

approximate solution of an equation. In this paper we use Chebyshev spectral
collocation method (CSCM) to solve Eq. (1.1) with the initial and boundary
conditions (1.2)-(1.3).
The outline of this paper is as follows. Section 1 contains a brief summary
on telegraph equation. In section 2, we review some of the standard facts on
Chebyshev spectral collocation method. In the third section, we develop the
theory of transformation of telegraph equation to system of ordinary differen-
tial equations. In section 4, the numerical results of applying the method of
this article on some test problems for the Eq. (1.1) are presented.

2. Chebyshev spectral collocation method

Consider a one-dimentional domain: −1 ≤ x ≤ 1. The domain of interest
is discretized using the Gauss-Lobbato points defined as

{ξj} = {cos(jπ
N

)}Nj=0. (2.1)

We interpolate u(x) by the polynomial P (x) of degree at most N of the form:

P (x) =
N∑
j=0

χj(x)u(ξj), (2.2)

in the Chebyshev-Gauss-Lobbato (C-G-L) points with χj(x) for j = 0(1)N,
are polynomial of degree at most N such that

χj(ξk) = δjk, j, k = 0(1)N. (2.3)

It can be shown that (see [2, 3, 6, 7, 8, 21]):

χj(x) =
(−1)j+1(1− x2)T ′

N (x)

γjN
2(x− ξj)

, j = 0(1)N, (2.4)

where

γ0 = γN = 2, γj = 1, j = 1(1)N − 1,

and TN (x) the Chebyshev polynomial, i.e.,

TN (x) = cos(N arccosx). (2.5)

The values of derivative dkP
dxk , with k = 1, 2, · · · , p at the C-G-L points can be

computed by

d̂kP

dxk
= M (k)P̂ = MkP̂ , (2.6)
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where .̂ labels vector, e.g., P̂ = (P (ξ0), P (ξ1), · · · , P (ξN ))T and M (1) are the

differentiation matrices. The entries of M(M (1)) are

mkj = − γk
2γj

(−1)j+k

sin((k + j) π
2N ) sin((k − j) π

2N )
, k ̸= j, 0 ≤ k, j ≤ N,

(2.7)

mkj = −1

2
cos(

kπ

N
)(1 + cot2(

kπ

N
)),k = j, k ̸= 0, N, (2.8)

m00 = −mNN =
2N2 + 1

6
. (2.9)

As an alternative approach, the diagonal entries of M can be computed in the
way that represents exactly the derivative of a constant [21]

mii = −
N∑

j=0,j ̸=i

mij .

3. CSCM for telegraph equation

In this section, we outline the main step of our method to solve the telegraph
equation (1.1) with initial conditions (1.2) and boundary conditions (1.3) by
using CSCM. Set ∂u

∂t (x, t) = v(x, t). Then we can rewrite (1) as follows

∂v
∂t (x, t) = −2αv(x, t)− β2u(x, t) + ∂2u

∂x2 (x, t) + f(x, t)
∂u
∂t (x, t) = v(x, t)

(3.1)

with the initial conditions

u(x, 0) = f0(x), v(x, 0) = f1(x) (3.2)

and the boundary conditions

u(0, t) = g0(t), u(1, t) = g1(t). (3.3)

Now we describe the Chebyshev pseudospectral method for system of PDEs
(3.1)-(3.3) to convert it to system of ODEs. For this let N be a nonnegative
integer and denote by δj = 1

2(1 + ξj), j = 0(1)N, the Chebyshev-Gauss-
Lobatto points in the interval [0, 1]. We discretize (3.1) in space by the method

of lines replacing ∂u
∂x(δi, t),

∂2u
∂x2 (δi, t) by pseudospectral approximations given

by

∂uk

∂xk
(δi, t) ≈ 2

N∑
j=0

mk
iju(δj , t), i = 1(1)N − 1, k = 1, 2 (3.4)
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and Here M (k) is differentiation matrix of order k. Substituting (3.4) into
(3.3) and taking into account that

u(δN , t) = g0(t),
u(δ0, t) = g1(t)),

(3.5)

we obtain the following system of ODEs:

∂v
∂t (δi, t) = −2αv(δi, t)− β2u(δi, t)

+2
∑N−1

j=1 m2
iju(δj , t) + 2(m2

i0g1(t) +m2
iNg0(t)) + f(δi, t),

∂u
∂t (δi, t) = v(δi, t), i = 1(1)N − 1

(3.6)

with the initial conditions

u(δi, 0) = f0(δi), v(δi, 0) = f1(δi), i = 1(1)N − 1. (3.7)

We can write the equations (3.6)-(3.7) in the matrix form as follows

dU
dt = AU +G, (3.8)

where

U =

[
U
V

]
, A =

[
oN−1,N−1 IN−1,N−1

B C

]
, G =

[
oN−1,1

D

]
,

U =


u(δ1, t)
u(δ2, t)

...
u(δN−1, t)

 , V =


v(δ1, t)
v(δ2, t)

...
v(δN−1, t)

 ,

and

B =



2(m2
11 − β2) 2m2

12 . . . 2m2
1,N−1

2m2
21 2(m2

22 − β2) . . . 2m2
2,N−1

...
...

...

2m2
N−1,1 2m2

N−1,2 . . . 2(m2
N−1,N−1 − β2)


N−1,N−1

,

and

C =



−2α 0 . . . 0
0 −2α . . . 0

...
...

...

0 0 . . . −2α


N−1,N−1

,
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D =


2(m

(2)
10 g1(t) +m

(2)
1,Ng0(t)) + f(δ1, t)

2(m
(2)
20 g1(t) +m

(2)
2,Ng0(t)) + f(δ2, t)
...

2(m
(2)
N−1,0g1(t) +m

(2)
N−1,Ng0(t)) + f(δN−1, t)

 ,

with the initial condition

U(0) =

[
U(0)
V (0)

]
. (3.9)

We apply fourth order Runge-Kutta formula for the numerical integration of
the system of ODEs (3.8) with initial conditions (3.9).

4. Numerical results

Example 1. We consider the Eq. (1.1) with the following conditions [1]:

f0(x) = sinh(x),
f1(x) = −2 sinh(x),
g0(t) = 0,
g1(t) = e−2t sinh(1),
f(x, t) = (3− 4α+ β2)e−2t sinh(x).

(4.1)

The exact solution is given by

u(x, t) = e−2t sinh(x). (4.2)

In this section, we give some computational results numerical experiments
with the method based on the preceding sections. To show the efficiency of
the present method for our problems in comparison with the exact solution
we calculate the maximum error ||u||∞ defined by

||u||∞ = max{|unumer − uexact| : 0 ≤ i ≤ N}.
Where unumer and uexact are the numerical and exact solution, respectively.
Numerical computations were carried out in Matlab.
Table 1 show the absolute error using the technique presented in the previous
section with ∆t = 0.001, N = 16, α = 20 and β = 10 for t = 0.5, 1, 1.5, 2.

Table 1. Absolute error for u(δj , t) with ∆t = 0.001, N = 16, α = 20 and β = 10
for t = 0.5, 1, 1.5, 2.

δ/t 0.5 1 1.5 2
δ2 0.0020 9.7848e− 4 4.0835e− 4 1.6057e− 4
δ6 0.0024 0.0015 7.3220e− 4 3.1182e− 4
δ10 9.8950e− 4 6.4268e− 4 3.0918e− 4 1.3295e− 4
δ14 1.2012e− 4 7.8022e− 5 3.7535e− 5 1.6140e− 5
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In Fig. 1, we plot exact solution and numerical solution at t = 1, N = 128, β =
10, α = 20 and ∆t = 0.001 for Example 1.
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Figure 1. Exact solution and numerical solution at t = 1, N = 128, β =
10, α = 20 and ∆t = 0.001 for Example 1.

In Fig. 2, we plot max error at t = 0.5(0.5)2, N = 5(5)50, β = 1, α = 5 and
∆t = 0.001 for Example 1.
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Figure 2. Max error at t = 0.5(0.5)2, N = 5(5)50, β = 1, α = 5 and
∆t = 0.001 for Example 1.
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In Fig. 3, we plot max error at t = 1, N = 5(5)50, β = 1 and ∆t = 0.001 for
Example 1.
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Figure 3. Max error at t = 1, N = 5(5)50, β = 1 and ∆t = 0.001 for
Example 1.

In Fig. 4, we plot log(max error) at t = 1, N = 5(5)50, α = 2 and ∆t = 0.001 for
Example 1.
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Figure 4. log(Max error) at t = 1, N = 5(5)50, α = 2 and ∆t = 0.001
for Example 1.
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In Fig. 5, we plot log(absolute error) at t = 1, N = 16, α = 2 and ∆t = 0.001 for
Example 1.
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Figure 5. log(absolute error) at t = 1, N = 16, α = 2 and ∆t = 0.001
for Example 1.
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Figure 6. Absolute error at t = 1, N = 16, β = 20 and ∆t = 0.001 for
Example 1.

In Fig. 6, we plot absolute error at t = 1, N = 16, β = 20 and ∆t = 0.001 for
Example 1.
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Example 2. We consider the Eq. (1.1) with the following conditions:

f0(x) = sin(x),
f1(x) = 0,
g0(t) = 0,
g1(t) = cos(t) sinh(1),
f(x, t) = −2α sin(t) sin(x) + β2) cos(t) sin(x).

(4.3)

The exact solution is given by

u(x, t) = cos(t) sin(x). (4.4)

Table 2 show the absolute error using the technique presented in the pre-
vious section with ∆t = 0.001, N = 16, α = 20 and β = 10 at t = 0.5, 1, 1.5, 2
for Example 2.
Table 2. Absolute error for u(δj , t) with ∆t = 0.0001, N = 64, α = 20 and β = 10 at
t = 0.5, 1, 1.5, 2 for Example 2.
δ/t 0.5 1 1.5 2
δ2 2.3747e− 4 1.8608e− 4 7.0089e− 5 6.6330e− 5
δ6 0.0017 0.0014 5.8266e− 4 4.1998e− 4
δ10 0.0032 0.0028 0.0013 6.0133e− 4
δ14 0.0038 0.0036 0.0019 4.9635e− 4
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Figure 7. Exact solution and numerical solution at t = 2, N = 64, β =
10, α = 20 and ∆t = 0.0001 for Example 2.

In Fig. 7, we plot exact solution and numerical solution at t = 2, N = 64, β =
10, α = 20 and ∆t = 0.0001 for Example 2. In Fig. 8, we plot max error at t =
0.5(0.5)2, N = 5(5)50, β = 1, α = 5 and ∆t = 0.001 for Example 2.
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Figure 8. Max error at t = 0.5(0.5)2, N = 5(5)50, β = 1, α = 5 and
∆t = 0.001 for Example 2.

In Fig. 9, we plot max error at t = 1, N = 5(5)50, β = 1 and ∆t = 0.001 for
Example 2.
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Figure 9. Max error at t = 1, N = 5(5)50, β = 1 and ∆t = 0.001 for
Example 2.

In Fig. 10, we plot log(max error) at t = 1, N = 5(5)50, α = 2 and ∆t = 0.001 for
Example 2.
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Figure 10. log(Max error) at t = 1, N = 5(5)50, α = 2 and ∆t = 0.001
for Example 2.

In Fig. 11, we plot log(absolute error) at t = 1, N = 16, α = 2 and ∆t = 0.001 for
Example 2.
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Figure 11. log(absolute error) at t = 1, N = 16, α = 2 and ∆t = 0.001
for Example 2.
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5. Conclusions

In this paper, a Chebyshev spectral collocation semi-discretization in space
is applied to numerical solution of telegraph equation. We describe behavior
of telegraph equation for various values of α and β at long time. Also we
describe behavior of telegraph equation for various values of N . The obtained
results show that this approach can solve the problem effectively.
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