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Abstract This paper concerns with the modeling and construction of a fifth order
method for two dimensional acoustic wave equation in heterogenous media.
The method is based on a standard discretization of the problem on smooth
regions and a nonstandard method for nonsmooth regions. The construction
of the nonstandard method is based on the special treatment of the interface
using suitable jump conditions. We derive the required linear systems for
evaluation of the coefficients of such a nonstandard method. The given novel
modeling provides an overall fifth order numerical model for two dimensional
acoustic wave equation with discontinuous coefficients.
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1. INTRODUCTION

Wave propagation in heterogenous media has many useful applications.
This problem arises in the case that some physical quantities confront abrupt
changes in the solution domain. Maxwell equations in a media that the con-
ductivity is a piecewise constant function, propagation of acoustic waves in a
media (water and weather) with different densities are examples of applica-
tions of this problem. The same author have developed a similar method for
one way wave equation[2]. In this paper two dimensional acoustic wave equa-
tion with discontinuous coefficients is considered. There are many papers in
the literature that deal with this problem with various techniques [3, 4, 5, 9].
High order methods for such problems are very important to provide some
more accurate solutions with less evaluation costs. So, here the Lax-Wendroff
method for time stepping to obtain a high order method in both space and
time is used. Along with formulating a fifth order method for smooth regions,
based on any standard fifth order method, for nonsmooth regions, i.e. irreg-
ular points, a special formula of the same order is obtained to have a fifth
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order method over the entire domain of solution. For smooth regions the Lax-
Wendroff time evolution with WENO reconstruction for space derivatives [7]
is used. The paper is organized as follows: In Section 2, the general model
problem and related jump conditions are introduced. The approximating for-
mulas at the interface are explained in Section 3, and finally the high order
jump conditions are given in Section 4.

2. 2D AcousTtic WAVE EQUATION

In numerical treatment of two dimensional wave equation it is more appro-
priate to consider the following two dimensional form

U; + AU, + BU, = 0, (2.1)
where
u 00 % 0 0 0
Uzyt)=| v |, A= o000 |, B={00 |,
p k 0 O 0 O

here p is the acoustic pressure, u and v are the components of acoustic velocity
in z and y directions, respectively. The coefficient matrices A(x) and B(x)
are functions of position consisting of physical quantities such as density p(x),
sound speed c(x) and bulk of modulus x = pc?. It is supposed that the
density and sound speeds are piecewise constant functions and have a jump
discontinuity at the point of Fj,:(z,y) = 0, where we call it interface,

po={ Loe) ey h 22

The interface Fy,(x,y) = 0 is a curve in x — y plane and for the sake of
simplicity we consider it to be linear. We use the following jump conditions
to find unique solution of the problem (2.1).

A4 = [ = 0, (2.3)

where 7 is the unit vector normal to the interface. We assume that v, —v, = 0,
i.e., deformation is irrotational.

A standard method for updating numerical solution at the grid ij takes the
following form:

UZJZ‘H = U;j + updating terms. (2.4)

We note that all terms on the right hand side are evaluated at time level n,
and we drop it for simplicity in the subsequent discussion. For a fifth order
[c[v]
(0] < |
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method we will use a 21-point grid method

21
UZJL'JA = Uij + ZFWUZ-]-J (2.5)
=1
the I';;;, [ = 1,2,...,21 matrices can be determined with the Lax-Wendroff

method. However, we can construct a fifth order WENO-Lax-Wendroff method,
where in this case we have to start with a simple Taylor series in time,

n+1 / k? 17 k> (5)
Following[7] we approximate the first derivative U’ = —AU, — BU, using

WENO5 (WENO order 5) and then for U”, ..., U®) we use appropriate finite
differences of orders 4,4, 2, 2 respectively. We concentrate on the point (x;,y;)
and consider the point (zg,y0) on the interface to be near the point ij and
define the following transformation which specifies a new coordinates system
& —n where £ and 7 are, respectively, the new variables in the tangential and
normal directions to the interface.

()= 2 (5) (), o

where [ is the rotation angle. Now we can write the equation(2.1) in the new
coordinate system

B u(&,n,t) cosff —sinf 0

U(ﬁﬂ]at) = 17(5777,75) , Qo= sin3 cos 0 ) (28)
p(&,m,t) 0 0o 1

Ulz,y,t) = QoU(&n, ). (2.9)

Substituting in (2.1) we obtain
U + AU¢ + BU,, = 0. (2.10)
The jump conditions (2.3) now become [6],

[@ =0, [po]=0, [p]=0. (2.11)

3. APPROXIMATION AT THE INTERFACE

At irregular points, where some of the grid points in the stencil are on
opposite sides of the interface, the ordinary classical fifth order method is no
a0
EBEE
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longer valid. In order to obtain a fifth order method, we have to force the
coeflicients of the following derivatives to zero:

U7 U:Ea Uya Um:ra UI:lp Uyya waxa szya Umyya Uyyy7 U:m:xza Uxaczya Ux:}cyya

(3.1)

This means that at least a 21-point stencil is required. It is possible to choose
different 21-point stencils but we prefer a symmetric stencil in computations.
One of the choices of these 21 points can be the dots illustrated in Figure 1.
At these points a 21-point difference scheme of the form

21
UGt = Ui + ) TijaUi (3.2)
=1
is used. Now the I'’s are 3 x 3 unknown matrices, and the U;;;,[ =1,2...,21

are the solution values at grid points in the stencil containing the point ij (see
Figure 1).

-
N

FIGURE 1. 2D interface, new coordinates and a typical 21-
point stencil.
c[v)
EBE
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In order to obtain the I' matrices so that the method becomes fifth order
we consider the local truncation error at the point ij:

21
1 1 1 1
L =z ; LU — (U + ikUtt + Eszt“ + ﬂk?’Utttt (3.3)

1
+ ﬁkﬁ4Uttttt>ij + O(k%),

which will be formulated in the new coordinates system. The time derivatives
in the new coordinates systems are

U =QoU; = —Qo(AU; + BU,) (3.4)
U =QoUy = *Qo(Uee + Uyp)
Ut =QoUut = —*Qo((AUg + BU,)ee + (AUg + BUy)yn)
Uste =QoUsee = ¢*Qo(Ugeee + 2Ugeny + Un)
Usttrr =QoUttrr = —C4Q0(AU§§§§§ + BU&ééﬁn + 2AUE€£7777 + QBU&rmn
+ AUénmm + Bﬁnnnnn%

and so the summation in (3.3) reads,
21 21
Z Ly U = Z [i51QoUsj - (3.5)
=1 =1

It is now convenient to use the following new notations

I =Qy'TijuQo, Ui =Usy. (3.6)

Now from (3.6) and (3.5), the local truncation error (3.3) in the new coordi-
nates system reads,

20
1 _ 1 _ 1 ,- 1 _
L :QO{E ZZ;FZUZ — (U + §kUtt + 6k2Uttt + ﬂngtttt
1 o 4r 5
+ mk Uttttt)ij} + O(k ) (3.7)

We now expand U;’s about the point (zg,yo), and depending on the location

of the I** grid point to the — or + side of the interface, shown by superscript
a0
EBEE
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Wk W

, will be denoted by superscript “+” or “-”, respectively.

Uy =U"+ (U +nUy) + %(f?U& +26mUg, + 07 Uyy)
+ é(leUggg + 3¢ Uey + 3§l7712U£*7777 + U?U;n’ﬂ)
+ 2*14(5;1[]55&5 + 45?775U£*§En + 651277l2U€*§ml (3.8)
+44m}U, e + U Unonm)
+ %O@?Uggggg + 555477IU§§§§77 + 105?77?(]6*557777

+ 1051277?(]5&77}77 + 55”7;1U£*77nnn + n?U;nnnn) +O(k°).

Similarly we expand the time derivatives about (xg,yo)

Ui = — AU — BU,, — (§.(AU{ + BUy)e + n.(AU¢ + BU)y)

— (E2(AU{ + BU} e + 26enc(AU{ + BU ey
+ 12 (AU¢ + BUy )
— (E2(AU¢ + BU)gee + 3620(AUE + BU, ey
+ 35(:773(14[]5 + BUy )¢y + WS(AUg* + BU ) ym)
— (&(AU¢ + BUp)geee + 4€0:(AUZ + BUy )eeen
+ 653773(AU§ + BU)een + 4fc77§(AU§* + BU ) enm
+ W?(AUE + BUY) ) + O(k°)

U =¢* (U + Upy) + &c(Uge + Up e + 1e(Uge + Uy
+ fg(Ug*g + Upplee + 26enc(Uee + Uy, )en
+ 1 (Ue + Upy )iy + € (Uge + Uy eee
+3E20(Uge + Uy een
+ 3¢z (Uge + Uppenn
+ Ug(Ug*g + Uny)mmn + O(k*)

U = — 02((AU5* + BU,)ee + (AU + BU;)ny
+ &c((AU¢ + BUy)ee + (AU + BUy )i )e

(3.9)

=
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+0((AUf + BU)ee + (AUZ + BU )y
+ EX((AUf + BU)ee + (AUE + BU; )y e
+ 260 ((AUE + BU; ¢e + (AUE + BU; )nn)en

+ nc((AUg + BU)¢e + (AU + BUp)im)ym) + O(k %)

Ut =c <U§§££ + 2U¢eny + Upynn

+ gc(UE*E& + 2U€*§nn + Unnnn)
+ 1e(Uege + 2Uem + Ungan)n ) + O(K?)
7 _ 4 * * * *
Unite = — ¢ (AUggeee + BUgeeen + 2AUgeeqy + 2BUgeyyy
+ AU;W717 + BU;nnnn) + O(k).

Inserting all of these relations into (3.7) we obtain the local truncation error

as a function of 42 values U™, U,T, cee Uéggg in the both sides of the interface.
We can now use the jump conditions (3.10), see the next section, to represent
the local truncation error with respect to 21 values U™, U;, .. Ug&&
Ut =QU~
U, t=Q U,
+ _ —
Uy =1U,,

Ug =P + (57 - vy,
Ugn —Qz +Q3 o

777777 =@1U, nmm
57777 =Q2 §nn+Q3 nmn (3.10)

Cc

Ufzn (c )’ Q1Ug¢, + (( ) DQ1Uppy
UE€§ =Qa §£€+Q5UEEW+Q6U€77U+ QU

nmm =@1U, mnm
Uﬁnnn =Q2Ugy, + Q3Uppy

o~

+
U&énn (c QiU genn (( ) DQ1Upn
€£§n =Qa ££§n+Q5 55m7+Q6 nnn+Q7 nmmn
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+ = c 2 c 2 _
Uggee =Ugeee +2(7)7 ()7 — Q)Uggyy
c c _
+ ((;)4 - 2(07)2621 + Ql)Un'rmn

+ _ —
Unnmm =Q1 Ummnn

+ _ —_ —
Uenmmn _QzUEnmm + QU

+ . c 9 _ c 2 _
Ueenm _(CT) Q1Ugepny + ((CT) = DQ1Uppy

+ o — — —_ —_
Uéiénn _Q4UE€£7777 + Q5U§§nrm + QGUérmnn + Q7Us

+ - C 2 C 2 -
Uggeen =Useeen + 20 1) ()" = QUUggpyy

cecen
c 4 c ) _
+ ((CT) - 2(074_) Ql =+ Ql)Unrmnn
+ o —_ —
Ugeeee =@2Ugeeee + (@9 + Q10)Uggep,

where the ) matrices are defined as follows

Ql :diag(L p_/p+a 1)
Qo =diag(r™/k",1,p"/p7)

p+
—_ + —_
pTc
Q4 =diag(—,0, pi(cj)Q)
- 00 0 (3.11)
Q=57 10 0
C
00 0
procT
Qs =—((—)* — 1) diag(0,0,1)
p-cC
- 0 g; 0
Q7—((c¢)2—1) 10 0
0 0 0

=
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- - 350 0
Qs =((—)*—-2(=)*+1| 0 1 0
et et 0o o0 2
P
- 3520 0
—9(Z)2((Z-)2 — 0 1 0
Qo (C+)((C+) ) o
=
100
Q10 = 0 0 0
0 0 0

Now to obtain a fifth order method we force the coefficients of U~ U,;r, ce UE_€§§§

in the local truncation error to become zero. So we find the following linear
systems

21
Y TWQu=F, (=12...,21), (3.12)
=1

where the coefficient matrices @, when both the I point and the center point
17 are located at the same side of the interface, are

Qu=1, Qu=&I, Qu=mnl, Qu=§&I,
Qsi =26mil, Qe =nil,
Qu=_§1, Qu=3&ml, Qu=3&n'l, Quu=n/l,
Quu=¢&1, Quoy =4I, Quzy =61, Quiy =44,
Qusi=n'l, Qusi=&1, Quu=>5&nl, Qisy=10gn1,
Quou = 10771, Qaoy = 5Em T,  Qory =nj1,
(3.13)

)
EIE
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and are

=

Qu =Q1,

Qa =6Q2,

Qa1 =mQ1 + &Qs,

Qu =& ( ) Q1,

Qs —2&?71@27

Qo1 =17 Q1 + 25mQs + 512((%;)2 - 1)@y,
Qu =¢'Qu,

Qs =67 Qs + 3¢} 771( ) Q1

Qo =€ Q6 + 36m; Qa,

Quoa =6/Qr +36m(()* ~ 1)Qu + 36mf Qs + nf Q1.
Q111 =41,

Qu21 =4 Q,

Quas =261 (C)(50)? - Qu) + dgnQs + 66int (),
Qua1 =4E'mQs + 467} Qs

Q15,1 Zﬁf((g)4 - 2(%)2621 + Q1) + 4EmQ7

(3.14)

+ 65127712((27)2 — Q1)Q1 + 4817 Qs + 1 Q1
Q161 =& Qs,
Q70 =5&'mI,
Qs =7 (Qo + Q10) + 10617 Qu,

Quoa =206 (S 2((50)? - Qu) + 1060F (5%,
Q20,1 =& Qs + 106807 Q6 + 5m;' Qa,

Q211 =67 Q11 + 5514771((2 >t — 2( ) Q1+ Q1) + 10607 Q7,

C
+ 105127713((67)2 — 1)Q1 + 56m! Qs + 17 Qn,
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otherwise.
The F;, i=1,---,21, are also as follows
P =0,
FQ = — VA,
F3 = — Z/B,

Fy =12 — €A
F5 =—2v(n.A+&:B),
Fs =v2c? — 2un,. B,
Fr = — 132 A+ 312%¢, — GZ/ECQA, (3.15)
Fy = — 1B+ 302, — 6v&c(E.B + 2n.A),
Fy = — 1A+ 30°¢¢, — 6une(n.A + 26.B),
Fip = —13¢B + 3¢, — 61/1703
Fiy =vict — 436 A + 1202262 — 240€3 A
Fiz = =V’ (EB + neA) + 602 — 6VE2 (6B + 31:A),

Fiz =20c — 432 (E.A + e B) + 12022 (€2 4 n?) — T20€n.(E.B + n.A),
Fiy=—1% (ch +neA) + 60°*Ene — 6vn; (36.B + neA),
Fis =vic* — 43¢ B + 1202¢%n? — 24vm? B,
Fig = — 1Pt A+ 50icte. — 200322 A + 6002A%€3 — veE A
Fir = —15¢*B + 5vtctn, — 201/30250(503 + 2n.A),
+ 18002c%¢2n, — 1200€3(€.B + 41.A),
Fig = — 15 A + 2004, — 101/30277 A— 101/3C2§C(§CA + 2n.B)
+ 3002c26.(€2 + 312) 4 3002 c? — 120621.(26.B + 31.A),
Fig = —1°¢*B + 504¢t Ne — 101/30277 B — 101/30258(563 + 2n.A),
+ 3002 (3€2 + 1) — 1200Ea2(36.B + 2ncA),
Fog = — P A+ svicte, — 2003¢%0.(26.B + 1. A),
+ 180022 ¢ m? — 120vn> (4€.B + 1 A),
Fy = — 1P B + 504ty — 201/3c2773 + 60V20277? 12017 B,
where (&.,1.) represents the coordinates of the center point (x;,y;) in trans-

formed system. It is also possible to represent the linear systems (3.12) as
a single linear system of equations with 189 unknowns. Taking transpose of

)
EIE
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both side of (3.12) gives

21
ZQAZF?:‘FZt? (7’: 1)2)721)’
=1

which can be assembled to obtain the following single linear system of 189
unknowns

QI =F. (3.16)

4. JumMP CONDITIONS

Derivation of special formulas in the interface requires high order jump rela-

tions to be imposed in the interface. We use the second order jump conditions

in [5]

Ut =Q:U"
+ _ —
Uy =1,
Ul =QaUs + Q3U,;
+ _ - 4.1
Uy =@1U, (1)

c _ c _
Uge :(CT)QQlUgg + ((cj)? — 1)U,
+ _ — —
Ugy =Q2Ug, + QsUyy;,
where () matrices are defined in the new coordinates system and they were
already introduced in (3.14). Differentiating (4.1) with respect to  we obtain,

+ _ p—
Umm _QlUmm

+ _ p— —
Uem _QQUE”]”] + Q3Uyy,

+ ¢ \2 - C 2 -
+ . —
Unmm _QlUnrmn
+ _ — —
Ugim =Q2Ugyy + QU (4.2)
+ (¢ \2 - C 2 -
Ueenn _(CT) Q1Ugepy + ((CT) = V1T
+ . —
Unmmn _QlUnnmm

+ . —_ —_
Uﬁfmnn _Q2U£mmn + QU

+ (¢ 2 - C 2 -
Ueenm _<CT) Q1Ugepny + ((CTL) = DQ1Upy-
(<)
EE
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So, for a complete set of fifth order jump conditions we just need to provide
some similar jump relations to the terms Ugee, Uggee, Ugegee:

[wre] =[c* (wge + uegy)] = 0,
[pee] =[c* (Pree + Pign)] = 0.

From (2.1) we obtain

2
[(;)(pééé +p§m7)] =0,

[HCQ((% + vp)ee + (ue + vy)ym)] = 0,

which results in
+

+ P € N~ —y _F
Peee —,T—(CT) (Pege + Peyn) — Peny
o (4.3)
R C

+ K € e - - — -y .t + +
Ugee = () (gge + gy + Ve + V) — Uy + Vg + V.

Now dropping pgm, ugm, vg.%n, vl and using (4.2) gives

nnm
+ o + —
+ _P € 2 — P € 2 _
Pege = = (C+) Pege T = ((C+) e, (4.4)
+ _k P, C \2 _
Uege =3 Yeee T 7 ((G5)" = Dvngy: (4.5)

From v¢ = uy, it follows that vggg = “&J'rEn from which by inserting uétc‘n into
(4.2) we obtain

+ _,C 2 _ C |9 _
Ugee —(C—Jr) Uge, T ((C—Jr) = Dy (4.6)
From (4.4),(4.5), and (4.6), we now obtain the following jump condition for

Ugee

+ _ — — — —
Ugge =QuUgee + @sUgg,) + QeUgy, + QrUyy,. (4.7)
Now by differentiating (4.7) with respect to 7 we obtain
+ _ — - — —
Ugeen =Q@aUgeey + @sUseyy + QoUgyyy + QU (4.8)
+ . — — — —
Ugteny =QaUgeeny + QsUggyny + Q6Ugyyyy + QU (4.9)

We next obtain the jump conditions for Ugeee :

Uun] =0 gives [ (Ugece + 2Ueeam + Unonn)] = 0,
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and hence
(s - - N _ o+ _
Uggee = ()" Ugeee + 2Useny + Unnnn) — 20y = Uy (4.10)
From (4.2), replacing U, 5—27771 and U;gmn in the above formula gives

+ - € 2 C V2 -
Uggee =Useee +2(1)7((1)7 = Q)Uggy
N _ (4.11)
c c _
+ ((;)4 - 2(07)2621 + Ql)Unnnn'
Now differentiating this formula with respect to 1 we also obtain the following

. o, . + .
jump condition for Uééfﬁn'

c c
U+ 77— 2= 2005 2 —
ceeen E€§£n_+ () E( )~ QU 1)
c c _
+ ((07)4 - 2(67)2Q1 + Ql)Unmmn'
As the derivation of the jump condition for ngggg needs a long similar calcu-
lations we only here mention it without further calculations:

+ _ — —
Ugeeee =@2Ugeeee T (@9 + Q10)Ugeey,

¢ N (4.13)
+ QsUgypn + QiU

5. CONCLUSIONS AND DISCUSSIONS

High order interface methods are important tools to develop more efficient
approximations for simulation of long time behavior of wave propagation in
2D with low evaluation costs. A fifth order method has been developed for 2D
acoustic wave equation in heterogeneous media. We derived high order jump
conditions to obtain a high order method at irregular points as well. Here the
interface was assumed to be linear curve, However, in the case of an arbitrary
smooth curve the derivatives of the interface come into the formulation and
the situation is a bit more complicated from theoretical point of view. A
similar method can be applied to Maxwell equations in a media with different
conductivities.
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