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Abstract The first integral method is an efficient method for obtaining exact solutions of
some nonlinear partial differential equations. This method can be applied to non
integrable equations as well as to integrable ones. In this paper, the first integral
method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
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1. Introduction

In the present letter we consider a class of nonlinear partial differential equation
with constant coefficients which is called Ginzburg-Landau equation

ut − iut +
1

2
uxx +

1

2
(β − if)uyy + (1− iδ)|u|2u = iγu. (1.1)

where β, f, δ, γ are real constants. As we all know Ginzburg-Landau equation is a
class of a Schrödinger equation with a nonlinear term [20]. This equation governs the
finite amplitude evolution of instability waves in a large variety of dissipative systems
which are close to criticality. Various forms of Ginzburg-Landau equation arise in
hydrodynamic instability theory: the development of Tollmien- Schlichting waves in
plane Poiseuille flows, the nonlinear growth of convection rolls in the Rayleigh-Bénard
problem, and appearance of Taylor vortices in the flow between counter rotating cir-
cular cylinders [4, 15].
During the past decades, many powerful methods to construct exact solutions of
nonlinear evolution equations have been established and developed such as the in-
verse scattering transform [1], the Hirota’s bilinear operators [11], the truncated
Painleve expansion, the tanh-function expansion and the Jacobi elliptic function
expansion [8, 13], the homogeneous balance method [23], the exp-function expan-
sion method [2, 6, 10], the F-expansion method [12], the Bäcklund transformation
method [14, 23], the sine-cosine method [18, 22] and so on. In this paper, using a

69



70 A. EL ACHAB AND A. BEKIR

new method that is called the first integral method, we obtain some new exact solu-
tions of Eq (1.1). The first-integral method was first proposed by Feng [9] in solving
the Burgers-KdV equation which is based on the ring theory of commutative alge-
bra. Recently, this useful method has been widely used by many researchers, such as
in [16, 17, 19] and the references therein.
The remainder of this paper is organized as follows. In Section 2, using the first-
integral method which is based on the ring theory of commutative algebra, we es-
tablish the exact travelling wave solution for Eq. (1.1), which is full agreement with
the previously known result in the literature. However, our results provide a good
supplement to the existing literatures. Finally, some conclusions are given in Section
3.

2. Exact solutions to the Ginzburg-Landau equation

In this section, we discuss the exact solutions of Ginzburg-Landau equation as
following:

Case 1

Assume that Eq. (1.1) has an exact solution in the form

u = exp i(η)v(ξ), η = (px+ qy + st). (2.1)

where v(x, y, t) is a real function and p, q, s are constants to be determined. Substi-
tuting (2.1) into Eq. (1.1) and canceling exp i(η), gives the partial different equation
for v

{

ivt +
1
2 (vxx + βvyy)− 1

2 ifvyy + i(pvx + βvy),
+fqvy + i(12fq

2 − γ)v − [s+ 1
2 (p

2 + βq2)]v + v3 − iδv3 = 0.
(2.2)

Diving the Eq. (2.2) into real parts and imaginary parts, we have

{

1
2 (vxx + βvyy) + fqvy + v3 − [s+ 1

2 (p
2 + βq2)]v = 0,

vt − 1
2fvyy + (pvx + βvy)− δv3 + (12fq

2 − γ)v = 0.
(2.3)

We seek firstly the traveling wave solutions in the form

v(x, y, t) = U(ξ), ξ = kx+ ly + νt, (2.4)

where k, l, ν, ξ0, are constants. Substituting (2.4) into Eqs.(2.3), we have the
ordinary differential equations for U(ξ)

{

1
2 (k

2 + βl2)U
′′

+ fqlU
′

+ U3 − [s+ 1
2 (p

2 + βq2)]U = 0,

− 1
2fl

2U
′′

+ (pk + βql + ν)U
′ − δU3 + (12fq

2 − γ)U = 0.
(2.5)

Under the constraint conditions:

r = − 2fql
k2+βl2

= 2(pk+βql+ν)
fl2

, b = − 2
k2+βl2

= − 2δ
fl2

, c =
s+ 1

2
(p2+βq2)

k2+βl2
= fq2−2γ

fl2
.

we can get

U
′′

= rU
′

+ bU3 + cU. (2.6)

let z = U(ξ), ω = U
′

, then Eq. (2.6) can be reformulated as a planar dynamic system
{

dz
dξ

= ω,
dω
dξ

= rω + bz3 + cz.
(2.7)
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In order to find the travelling wave solutions of Eq. (1.1), we are now applying
the first-integral method, the key idea of which is to utilize the so-called Divison
Theorem which is based on the ring theory of commutative algebra and to obtain
first integrals to system (2.7) under various parameter conditions. Then using these
first integrals, the above two-dimensional autonomous system (2.7) can be reduced
to some different first-order integrable differential equations. Finally, through solving
these first-order differential equations directly, travelling wave solutions for Eq. (1.1)
can be established easily.
Next, let us recall the Divisor Theorem for two variables in the complex domain C:

Theorem 2.1. (Divison Theorem) Suppose that P (ω, z) and Q(ω, z) are polyno-
mials in C[ω, z], and that P (ω, z) is irreductible C[ω, z]. If Q(ω, z) vanishes at any
zero point of P (ω, z), then there exists a polynomial Q(ω, z) in C[ω, z] such that

Q(ω, z) = P (ω, z).G(ω, z).

It follows immediately from the following theorem in commutative algebra [5]:

Theorem 2.2. (Hilbert-Nullstellensatz Theorem) Let k be a field and L an al-
gebraic closure of k. Then
i) Every ideal γ of k[X1, ...Xn] not containing 1 admits at least one zero in Ln

ii) Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be two elements of Ln . For the set
of polynomials of k[X1, ...Xn] zero at x to be identical with the set of polynomials of
k[X1, ...Xn] zero at y, it is necessary and sufficient that there exists a k-automorphisms
s of L such that yi = si for 1 ≤ i ≤ n. iii) For an ideal α of k[X1, ...Xn] to be max-
imal, it is necessary and sufficient that there exists x in L such that α is the set of
polynomials of k[X1, ...Xn] zero at x.
iv) For a polynomial Q of k[X1, ...Xn] to be zero on the set of zeros in Ln of an ideal
γ of k[X1, ...Xn] , it is necessary and sufficient that there exists an integer m > 0
such that Qm ∈ γ.

Now, we apply the Division Theorem 1 to seek the first integral to (2.7). Suppose
that z = z(ξ) and ω = ω(ξ) are the nontrivial solutions to (2.7), and p(ω, z) =

m
∑

i = 0
ai(z)ω

i, is irreducible polynomial in C[ω, z] such that

p(ω(ξ), z(ξ)) =
m
∑

i = 0
ai(z(ξ))ω

i(ξ) = 0, (2.8)

where ai(z) (i = 0, 1, ...,m) are polynomials of z and all relatively prime in C[ω, z],
am(z) 6= 0. Equation (2.8) is also called the first integral to (2.7).We start our study by

assumingm = 2 in (2.8). Note that dp
dξ

is polynomial in z and ω, and p(ω(ξ), z(ξ)) = 0

implies dp
dξ

|(2.7)= 0. By the Division Theorem, the exists a polynomial H(z, ω) =
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h(z) + g(z)ω in C[ω, z] such that

dp
dξ

|(2.7)= (∂p
∂z

∂z
∂ξ

+ ∂p
∂ω

∂ω
∂ξ

|(2.7)
=

∑2
i=0 a

′

i(z)ω
i+1 +

∑2
i=0 iai(z)ω

i−1(rω + bz3 + cz3)

= (h(z) + g(z)ω)(
∑2

i=0 ai(z)ω
i).

(2.9)

On equating the coefficients of ωi (i = 0, 1, 2, 3) on both sides of (2.9), we have

a
′

2(z) = g(z)a2(z), (2.10)

a
′

1(z) = g(z)a1(z) + (h(z)− 2r)a2(z), (2.11)

a
′

0(z) = −2a2(z)[bz
3 + cz] + a1(z)(h(z)− r) + g(z)a0(z), (2.12)

a0(z)h(z) = a1(z)[bz
3 + cz2]. (2.13)

From Eq. (2.10) we obtain that a2(z) is a constant and g(z) = 0, and take a2(z) = 1,
for simplicity. Eqs. (2.11) and (2.12) become

a
′

1(z) = (h(z)− 2r)a2(z), (2.14)

a
′

0(z) = −2[bz2 + cz + d] + a1(z)(h(z)− r). (2.15)

Balancing the degrees of a0(z), a1(z), and h(z) = 0, we conclude that deg h(z) = 0,
h(z) = 1 i.e., deg a1(z) = 1 or a1(z) = 2. Otherwise, if deg h(z) = k > 1, then we
deduce deg a1(z) = k + 1 and deg a0(z) = 2k + 2 from (2.14) and (2.15). This yields
a condradiction with Eq. (2.13), for the degree of the polynomial a1(z)[bz

3 + cz] is
k + 4, but the degree of polynomial a0(z)h(z) is 3k + 2.
In case deg h(x) = 0, assume that a1(z) = A1z + A0, A1, A0 ∈ C with A1 6= 0. By
(2.14) and (2.15), we deduce that h(z) = A1 − 2r and

a0(z) = − b

3
z4 + [

A1

2
(A1 + r)− c]z2 + [A0(A1 + r)]z +D,

where D is an integration constant.
Substituting a0(z), a1(z) and h(z) in (2.13) and setting all the coefficients of powers
zi (i = 0, 1, 2, 3) to be zero, we get































A1b = (A1 + r)(− b
2 ),

A0b = 0,
A1c = (−c+A1(A1 + r))4r3 ,

A0c = A0(A1 + r)4r3 ,
4r
3 D = 0.

(2.16)

By solving Eq. (2.16), we have

A1 = − 2r
3 , A0 = 0, D = 0, c = − 2r2

9 . (2.17)
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Now, taking the solution set Eq. (2.17) into account, Eq. (2.8) becomes

ω2 + (− 2r
3 )zω − b

2z
4 + ( r

2

9 )z
2. (2.18)

From (2.18), ω can be expressed in terms of z, i.e.,

ω =
r

3
z ±

√

b

2
z2. (2.19)

Finally, combining Eq. (2.7) with Eq. (2.19) and changing to the original variables,
we obtain traveling wave solutions to Eq. (1.1) as

u(x, y, t) = ( r3C0
exp( r

3
ξ)

1∓C0

√
b

2
exp( r

3
ξ)
) exp i(η), (2.20)

where r = − 2fql
k2+βl2

= 2(pk+βql+ν)
fl2

, b = − 2
k2+βl2

= − 2δ
fl2

,

c =
s+ 1

2
(p2+βq2)

k2+βl2
= fq2−2γ

fl2
, η = (px+ qy + [q2(f − 1

2β)− (2γ + 1
2p

2)]t),

ξ = kx+ ly + [(2δf − β)ql − βk]t and C0 remain arbitrary.
In case deg g(x) = 1, the argument is identical, so we omit it.

Case 2

Assume that Eq. (1.1) has an exact solution in the form

u = exp i(η)v(ξ), η = (px+ st), (2.21)

where v(x, y, t) is a real function and p, s are constants to be determined. Substituting
(2.21) into (1.1) yields

{

ivt +
1
2 (vxx + βvyy)− 1

2 ifvyy + i(pvx + βvy),
−iγv − [s+ 1

2 (p
2]v + v3 − iδv3 = 0.

(2.22)

Separating the real part and imaginary part of (2.22), we have
{

1
2 (vxx + βvyy) + v3 − [s+ 1

2p
2]v = 0,

vt − 1
2fvyy + (pvx + βvy)− δv3 − γv = 0.

(2.23)

Suppose

v(x, y, t) = U(ξ), ξ = kx+ ly + νt, (2.24)

where k, l, ν, are constants. Substituting (2.24) into Eqs.(2.23), we have the ordinary
differential equations for U(ξ)

{

1
2 (k

2 + βl2)U
′′

+ U3 − [s+ 1
2p

2]U = 0,

− 1
2fl

2U
′′

+ (pk + ν)U
′ − δU3 + (−γ)U = 0.

(2.25)

Under the constrain conditions:

ν = −pk, b = − 2
k2+βl2

= − 2δ
fl2

, c = 2
s+ 1

2
p2

k2+βl2
= −2γ

fl2
.

Let z = U(ξ), ω = U
′

, then Eq. (2.25) can be reformulated as a planar dynamic
system

{

dz
dξ

= ω,
dω
dξ

= bz3 + cz.
(2.26)
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Now, we apply the Division Theorem to seek the first integral to (2.26). Suppose
that z = z(ξ) and ω = ω(ξ) are the nontrivial solutions to (2.26), and p(ω, z) =

m
∑

i = 0
ai(z)ω

i, is irreducible polynomial in C[ω, z] such that

p(ω(ξ), z(ξ)) =
m
∑

i = 0
ai(z(ξ))ω

i(ξ) = 0, (2.27)

where ai(z) (i = 0, 1, ...,m) are polynomials of z and all relatively prime in C[ω, z],
am(z) 6= 0. Equation (2.27) is also called the first integral to (2.26). We start

our study by assuming m = 1 in (2.27). Note that dp
dξ

is polynomial in z and ω,

and p(ω(ξ), z(ξ)) = 0 implies dp
dξ

|(2.26)= 0. By the Division Theorem, the exists a

polynomial H(z, ω) = h(z) + g(z)ω in C[ω, z] such that

dp
dξ

|(2.26)= (∂p
∂z

∂z
∂ξ

+ ∂p
∂ω

∂ω
∂ξ

|(2.26),
=

∑1
i=0 a

′

i(z)ω
i+1 +

∑1
i=0 iai(z)ω

i−1(cz + bz3),

= (h(z) + g(z)ω)(
∑1

i=0 ai(z)ω
i).

(2.28)

where prime denotes differentiating with respect to the variable z. On equating the
coefficients of ωi (i = 0, 1, 2) on both sides of (2.28), we have

a
′

1(z) = g(z)a1(z), (2.29)

a
′

0(z) = g(z)a0(z) + h(z)a1(z), (2.30)

h(z)a0(z) = a1(z)[cz + bz3]. (2.31)

Since, a1(z) and g(z) are polynomials, from (2.29) we conclude that a1(z) is a constant
and g(z) = 0. for simplicity, we take a1(z) = 1, and balancing the degrees of a0(z),
and h(z), we conclude that deg h(z) = 1 only. Suppose that h(z) = Az + B , then
from (2.30) we find

a0(z) =
1

2
Az2 +Bz + C (A 6= 0), (2.32)

where C is an constants to be determined. Substituting a0(z), a1(z) and h(z) in
(2.31) and setting all the coefficients of powers z to be zero, we obtain a system of
nonlinear algebraic equations, and by solving it, we obtain the following solutions:

B = 0, A =
√
2b, C = c√

2b
. (2.33)

B = 0, A = −
√
2b, C = − c√

2b
. (2.34)

Using the conditions (2.33) and (2.34) in (2.26), we obtain

ω =
c√
2b

+

√
2b

2
z2, (2.35)
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ω = − c√
2b

−
√
2b

2
z2, (2.36)

respectively. Combining (2.35) with (2.26), we obtain the exact solution to Eq. (1.1)
and the exact solution to (1.1) can be written as :

u(x, t) = exp(iη)

√

γ

δ
tan(

√

[s+
1

2
p2][k(x− pt)]) + C0, (2.37)

where η = px− ( γ
fl2

(k2 + βl2) + p2)t and C0 remain arbitrary.

Similarly, for the cases of (2.36), we have anther exact solution to (1.1) can be written
as

u(x, t) = exp(iη)
√

γ
δ
tan−(

√

[s+ 1
2p

2][k(x− pt)]) + C1, (2.38)

where η = px− ( γ
fl2

(k2 + βl2) + p2)t and C1 remain arbitrary.

Notice that the results in this paper are based on the assumption of m = 1, 2 in Eq.
(2.27), respectively. The discussion becomes more complicated for the cases m = 3, 4
since the hyper-elliptic integrals, the irregular singular point theory, and the elliptic
integrals of the second kind are involved. We do not need to consider the case m ≥ 5
because of the fact that an algebraic equation with the degree greater than or equal
to 5 is generally not solvable.

3. Conclusions

In this paper, the first integral method was applied successfully for solving the
2D Ginzburg-Landau equation. Thus, we conclude that the proposed method can be
extended to solve the nonlinear problems which arise in the theory of solitons and
other areas.
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