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Abstract

In this study, we give results on the existence and uniqueness of solutions for generalized fractional integrodiffer-
ential equations with a nonlocal terminal condition. We have proved the existence of solutions to the problem
proposed using the Schauder fixed point theorem and the uniqueness of its solutions is proved using the Banach
fixed point theorem. At the end, we discussed the examples to support our results.
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1. INTRODUCTION

Fractional calculus is the branch of mathematics that has grown a lot in the last five decades through the study
of various fractional differential equations and fractional integrodifferential equations via initial conditions, boundary
conditions, nonlocal conditions, etc. It is very natural to describe many phenomena occurring in science, engineering
such as biology, geology, elasticity, etc. made it quite popular among researchers and motivated to develop numerous
models using different fractional derivatives.

In 1991, Byszewski initiated the study of fractional differential equations with nonlocal conditions, see ([2-4]). After
that, many researchers have turned to the fractional differential equations with nonlocal conditions. To name a few,
authors studied fractional integrodifferential equations with Caputo fractional derivative with nonlocal conditions in
Banach space and studied existence results for the problem in [9], also see [5, 8, 10-15, 23, 24]. Fractional terminal
value problems have been found interesting by many researchers. One may refer to [17, 18, 21, 22].

Motivated by all the aforementioned work, in this article, we propose generalized fractional integrodifferential
equation with terminal condition of the type

{ D) (t) =gt u(t), H(u(t), 0<up<1, 0<n<1, te(a,T], (1.1)
O Cu)(T) =0, Au(&), p<C=p+nl—p), &€ (a7, '
where

H(u(t)) = /O k(t, p)u(p)dp, (1.2)

and p € (0,1), n € [0,1], 6 >0, pu < ¢ = p+n(l—p), & € (a,T) and ° DA’ and °T' ¢ denote generalized Katugampola
fractional derivative of order i and Katugampola fractional integral of order 1 — ¢, function g : (a,7] X Rx R —» R
is a given function, &; are pre-fixed points satisfying 0 < a < & <& < --- <, <T and A\; = 1,2,--- ,n are real
numbers.
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2. PRELIMINARIES

In this section, we see some important definitions and results that we use in the paper. Beta and Gamma functions
are defined by

o) 1
D= [ ettt Bl = [ (1= 0" 0 >0,
0 0

Definition 2.1. [16] The space X%(a,T),c € R,q > 1 counsists of all real valued Lebesgue measurable functions g on
(a,T) for which ||g||xs < oo, where

b
dt\1/q
lollxe = ([ o)™ 0z 1, and gl = s (o).
a a<t<T

In particular, when ¢ = % we get X7, (a,T) = Ly(a,T).

Definition 2.2. [19] We denote by C[a, T], a space of continuous functions g on (a, 7] with the norm

= max t).
lglle = max l9(1)

The weighted space
0 —a®
0

Ce sla,T) = {g (@, T] 5 R: ( )Cg(t) e Ola, T]}, (2.1)

with the norm

10 —ad\¢ 0 —a’\¢
lollee =I (=) o) I= mas |(=5) o(t)] and Cosla. 7] = Cla, 7).

Definition 2.3. [19] Let Ay = (t‘s_ld/dt), 0 < ¢ < 1. Also denote C™[a,T] the Banach space of functions g which
are continuously differentiable, with As on [a,T] upto order (n — 1) and have derivative A¥g on (a,T)] such that
Ag‘g € Cc’g[a,T].

CR,.cla, T = {A’gg € Cla,T],k=0,1,--- ,n—1,A}g € CC’(;[(LT}}, n €N,

with the norm given by,

n

n—1
_ k n _ k
lgllex, . = z;) 1Asglle +1Asglloc s llgllex, = kiotgg%] |A5g(t)]-

In particular, for n = 0, we get O}, ([a,T] = C¢ s[a, T}.

Definition 2.4. [6] Let o > 0 and g € XZ(a,T), where X7 is as defined in Definition 2.1. Then the left-sided
Katugampola fractional integral °I* - of order p is defined as

t 6 _ 0 —1
T g(t) = r(lu)/ p‘“(t 5p )M g(p)dp, t > a. (2.2)

Definition 2.5. [7] Let u € Rt — N and n = [u] + 1, where [y] is the integer part of p. The left sided Katugampola
fractional derivative ° D", is defined as

"Dy g(t) = AL g(p)(D) (2.3)

() g ) e &
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Definition 2.6. [19] The left-sided generalized Katugampola fractional derivative 5Df;f of order 0 < p < 1 and type
0 <17 <1 is defined as,

(CDllg)() = CLT AT T g) (), (2.5)
for the functions for which the right-hand side expression exists.

Lemma 2.7. [20] Suppose that n > 0, n > 0, ¢ > 1 and 6, ¢ € R such that § > c. Then for g € X%(a,T), the
semigroup property of Katugampola integral is valid. i.e.

CLL)CLL)g(t) =° IiMg(t). (2.6)
Lemma 2.8. [7] Suppose that p >0, 0 < (<1 and g € C¢ 5[a,T). Then fort € (a,T),
DI )g(t) = g(t). (2.7)

Lemma 2.9. [7] Suppose that u >0, 0< (<1 and g € C¢5[a,T]. and 5I;I“g € Cl 5[a,T). Then,

"1,1"g(a) (t‘s —a’ )“—1
L'(p) Y
Lemma 2.10. [1] If 5Il’j+ and ‘SDZJr are defined as in Definition 2.4 and 2.5 respectively, then

CLL)C Dy )g(t) = g(t) — (2.8)

8 —giyo-1 (o) 0 — gdy\o+u-1
STH _
n(=%) = ( ) kz0,0>0 1>,
a+t\"5 RCESVANE #20,0>0t>a
t6_ 6/1,—1
it 5a) =0, 0<p<l.

Remark 2.11. [1] For 0 < p < 1, 0 < n < 1, the generalized Katugampola fractional derivative 5Df;’+” can be written
in terms of Katugampola fractional derivative as,

1- - 1-
Dl = CLETAC L) = CLET)CDEL), C=pta(l - p).
Lemma 2.12. [19] Let p >0, 0 < (<1 and g € Ci1—¢sla,b]. If p > ¢, then

1, g(a) = lim (L g)(t) = 0.

To discuss the main results, we need following spaces.
Ot 5la, T = {9 € Ci—¢sla, T):* Di'g € Cl—c,é[a,T]}, 0<¢<, (2.9)
and

C’fic)é[a,T] = {g € Ci—¢sla, T 9 D§+g c Cl_cvg[a,T}}, 0<(¢<1,
as 'DIlg = (512(;*“))(5D§+)g, it is clear that Cf_cﬁ[a,T] C C17% 5la, T
Lemma 2.13. [/ Let >0, n>0and ( =p+n—pun. If g € C’f_c#s[a,T], then

CIS)CDE)g(t) = CIE)(C DR g(t) = DI g(t).

Lemma 2.14. [/ Let 0 < p <1, 0<n <1, (=p+n—pwn Ifg: (a,T] x R x R = R is a function such that
g(-, u(-), H(u())) € Ci—¢sla,T] for any u € Ci_¢sla, T) for any u € C’lc_gé[a,T} satisfies Terminal Value Problem
(TVP)
{ (5Df;fu)(t) = g(t,u(t)), O<p<l, 0<n<1, te (a7, (2.10)
CICu)(T) =Y &), n<C=ptnl-p), & e (a,T], '
GO
BB
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iff u satisfies the mized-type nonlinear Volterra integral equation
K /0 —al €0 —pd\n-1
u(t =7( ) /\/ p‘“(’*) 9(p, u(p))dp
0=t Z - (v, u(r)

+ﬁ/@ p6‘1(t5;p ) " (o, u))dp, (2.11)

K= (F(C) —ZM('S? ;a6)<1>—1- (2.12)

Theorem 2.15. Let 0 < u <1, 0<n <1, (=pu+n—un Ifg: (a,T] x Rx R — R is a function such that
g, u(+), H(u(")) € Ci—¢sla,T) for any u € Ci_¢s(a,T] for any u € Cf_g(;[a,T] satisfies TVP (1.1) iff u satisfies
the mized-type nonlinear Volterra integral equation

)= s (“55) ZA [ o () st @)y

n
1 5—1 t —p°\r-
F) " 2.1
T / () (o u(p). H(u(p)dp, -
where
— - ‘ € —ad\¢-1 -1
K- (r(@ ()T -
Proof. The proof follows from the Lemma 2.14. o

3. MAIN RESULTS

In this section, we prove the existence and uniqueness results for our problem. For this, we state some hypotheses:

Hy) g:(a, T]xRxR — R is a function such that g(-,u c cni-w a,T] for any u € C1_¢ s and there exists
1-¢,6 ¢
a positive constant M, N > 0 such that for all uy, vy, us, vs € (a,T],

|lg(t, u1, uz) = g(t,v1,v2)] < Muy — vi] + Nlug — val. (3.1)
(Hz2) The constants

0, = <|K Z)‘ (55 >u+< 1 N (T5 é—a‘;)u) (3.2)

and
T¢Nky n € —al\n T —al\n—C+1
Oy = K = .
2 r(u+1)[| X_;A( ) () } (33)
are such that
MQ + Qs < 1. (34)

(Hs) The function g : (a,7] x R x R — R is such that g(-,u(-), H(u(-))) € CJ* 1( g‘), for any v € Ci_¢s and
YV t € (a,T], there exist constants M, N > 0 and L > 0 such that

lg(t,u,a)| < M|u| + Nla| + L. (3.5)
Theorem 3.1. If the hypotheses (Hy) — (Hs) holds then the problem (1.1) has at least one solution in Cfig’é[a,T} C
ci sla, T).

74’6 bl

(=)=
E)NE
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. L, -
Proof. Define B. = {u € C1_¢5[a,T] : ||ullc,_, ; < €} with e > 1= (M + ) L= NIy

F:Ci—¢sla,T) = Ci_¢sla, T] by

I(p 5 i
F(lu)/atpél(t‘s ;pé)u—lg(pu(p) H(u(p)))dp

Claim 1: F(B.) C B.. Consider

(55 o= iy 2o [ (555 bl )
>1—< 1 ) /atpé_l(t‘s ;p5>#_l‘g(p,u(p)7H(u(p))> ‘dp
5

K| 5— ff_P
St

] / () (M) + NIE @)+ L] do

)ﬂ_l [M|“(p)| + NH (u(p))| + L} dp

< s [ (Y T () T Y T ) + M) + L] do

5 _ad

. tsgaé)lcr(lu) /atp‘;‘l(té;pé)#l(p . )Cfl(pé_aé)lfc{Mlu(p”+N|H(u(p))|+L}dp

]

g aé)g—l [M|u||01m n L<p5 g a5)1C:| dp

S
+N|Kéxi/jpé—l(fggpé)“_lm/op(Téga5)<_1||u||cl_wd7 dp
+ (tégaé)lcr(lu) /atpé‘l(tégpé)ﬂl(pggaé)“ {Mlullclg,a +L(p6;a6)11dp

1

>1_gf(lu) /:pé_l(té;ﬁs)#_lkT /Op (- gaé)c_l\lullcl_c,m dp

)

93
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n i § 0\ u— 0 _ 40\ (-1
< |u||01<*5]\1{(5)’|z)\i/ p571<51 619 )u l(p 6a ) dp
i=1 @
Kl & 13 6 _ o\ n—1 K S ) -
LI|‘(/L|);/\i/a p5_1<§ZTp>M dp"'TcNkTHuHleca ] Z / 5 d ) dp
5 _ .6 —¢ t § 0 _ 5 ¢—1
s Mllle, o, (C55) F(lu>/p5’1(t ) (® 5a) P

) g [ ()

5
£ —ad\1-¢C 1 [t 6 —pdyn-1
F TNk, s () F(u)/ ] Gl L

0

M|K|T(¢) & €8 — af\mte-1 LIK| & € — ad\u
< llerc e g () i A ()

i=1
TCNKT|K| & — MT(¢) /T® —ad\n~
//f+1 Z ( ) +H HCI CEI‘(C'F,U)( 5 )
L T5 — af\ ¢+l TSkpN (T —ad\r—C+1
+F(,u+1)( 5 ) + [lulle- <5F(u+1)( 5 )

|:|K|Z>\ ( )H+C 1+ <T55a5>u]|u||01<’6

T kJT |:|K|Z)\ ( ) n (T‘S _a5)uC+1:||u||01<’(s
5 _ ad\n 0 qd\p—¢+1
LF(H"’I)['K;)\Z( : 5 ) +(T 5 ) C+}

L
< [
< (M + Qe+ T

< (MQy+Q)e+ L Qy <e.

[«

That is,
||~7:UHC17<,5 <,

which gives F(B.) C B..

Claim 2: F is completely continuous. Let {z,} be a sequence such that z, — x in B.. Then for every t € (a,T],
consider

)
n &i § _ 0\ pu—
gri');& i P () gt (), H (i (0))) — gt 0, H ()
§_a5 1— t 6 _ 0 u—1
(=55 Cp(lm / ) gt un (0, H O (6))) — 906w, H ()] dp
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6

n & 8 b\ ul b P 1
sr'ﬁ;')i_lAi (S5 T () Kot s () = g6, ), Hl) oy dp

) i [ )T () s B - gt a0, HOOD oot

< | Z (ESE) T ()] <ot ), ) = g a0, O

<llg(, n(-), (un(-))) =9, u(), H@))lor s

which shows that F is completely continuous.

Claim 3: F(B.) is relatively compact. As F(B.) C Be, it implies that F is uniformly bounded. Also, F is
equicontinuous. For, for any 0 < a < t; < t3 < T, consider

(Fu)(t) = (Fu)(t2)
< BTy (’fgga‘s)c‘l}i& [ o ) ottt iy
T =0 Ly T = R

ALY P )
L
<llloncqiungs (55) - (555 o)

B (]

as to — t1. Therefore, F is equicontinuous.

Hence, F(B.) is an euquicontinuous set which implies that F(B,) is relatively compact. Thus, from claims (1)-(3)
and Arzela-Ascoli theorem, we can say that F : B, — B, is completely continuous. Hence, by Schauder fixed point
theorem, the operator F has at least one fixed point and hence the problem has at least one solution. O

Now, we prove uniqueness theorem.
Theorem 3.2. If the hypotheses (H1) — (Ha) holds, then the problem (1.1) has unique solution.

Proof. From the operator defined in the previous Theorem (3.1), we have F : Ci_¢ s[a, T] — C1—¢ s[a, T] by

n

F00 = g () T [ () ) e

I
F(lu)/atpal(tfsgp ) B g(p,u(p),H(u(p)))dp, (3.7)
80
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from the Claim (1) of the previous Theorem 3.1, we can see that for u € B, ||Ful|c,_. ; < €. Next, we prove that F
is a contraction. Consider

() - Fopen (S5
<Lop o [ () oo, [ ) = o0, [kt )
(5 g [ ()
<o(uto). [ b rutrar) — (. 00, [ Koy ap
<L o [ () [ttt ] [ o) ot
(550 g [ () [t -+ | [ ktmiute) = virlar] ap
Sr ')12?1/5 o 5 fp) (pﬁgaﬁ)w
[ () o) o+ 0 (P [ () - e
(59 L P () ()
() e vt () [P e e
<i|)éxi jip ‘1(53;pé)”_l(‘”é;“6)1_<{M+NkTT<(p6gaé)c_l}dpIIu—vlcl_m
(S g [ () )
[+ 0 (Pl vl
< K| [mixi(@ 5“)““‘%%?;&(555“5)"]||uv|c1<,5
P () v (7)™ e e
< Mrss [K&Ai(@ 7 ()]
+ fo A () () = e
< M9+ ) ol .
[[Fu— Folle, s < (M 4 Q2)|lu —vl|o,_. 5, Vu,v € Be. (3.8)
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Thus, F is a contraction map and hence by the Banach fixed point theorem, the operator has unique solution in
leg’g[a, T].

O
4. EXAMPLES
In this section, we apply the result to examples
Example 4.1. Consider the nonlocal problem
5 Tyt
{ COEINO =0 (bl KEP@D), ¢ e (23] m
("L u)(3-) :4U(g)a C=p+n(l—p).
Solution:

Set,uz%7 77—1thenC—715 Also, leté—iand

g(t,u(t),/1 k(t,p)u(p)dp) %smu-l— !

t
5 / u(p)dp, k(t,p) =1,s0 that kr =1, T = 3,
2

2 1 2 1
A1807 |g(t,u1,u2) _g(t,’l}17’l)2)| < 7|’u’1 _U1| + *|U2 _02‘7 v Uy, u2, V1, V2 SO M= PPE) N=_.
11 5 11 5
11 7/3)% — (2)%\~5/16\ !
K| = ’(r(lﬁ) - 4(%) ) ~ 0.198305 < 1.
2

Now, we find ©; and 5.

T(11/16) (7/3)F — 23\ & | ((3)F - (2)F\3
N = Fio716) {0.1676673047(4)<) i (7)

. . ] ~ 1.68066
2 2
1
311/16 2 1 1 1 1 113
7/3)% — 3)% — (2
Oy = 35[0.1676673047(4)<( / )21 2 )2)2 + (( ) : ( ))} ~ 0.513743.
r(;) ’ :
2
Then MQq + Qy = TQI

X 17 % 1.68066 + 0.513743 = 0.819317 < 1 Hence, by the Theorem 3.2, the problem (4.1) has
unique solution in Cs/16,1/2(2, 3]
Example 4.2. Consider the nonlocal problem

(CDlu)(t) ( t), [ k( dp) te (2,3, "
CIw)(3-) = %u(2.1) + u(2.2), C=p+n(l—p). :
Solution:

Setu:é7 nzéthen@z

%. Also, let § = % and

a(tute), [ bleput)dp) = 5 cosut ;[ e P updp, Kt.p) e ),
1 2

sothat kp =e ™, T=3,6 =21, & =22, \y ==, Ao = 1.

1 1
Also, [g(t, u1,uz) — g(t,v1,v2)| < §|U1 — |+ 1

1
|’LL2—U2|, Vul, U2, V1, U2 so M = -, N

-ty e

1 1
2

~ (0.5571505 < 1.
2
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Now, we find €7 and 5.

Q= Ff(ﬁ’) [0.5571505@ x 1+ 1) + (M)} ~ 2.29597941,

4

(=

3

~ 0.0121803.

Q, — 32/3 % 0.25 x e4 {0'5571505(;((2.1)% - (2)%)§ N <(2.2)% - (2)é)§> N ((3)% (2)%>

1
Then MQq + Qo = 3 X 2.29597941 + 0.0121803 = 0.77750677 < 1 Hence, by the Theorem 3.2, the problem (4.2) has

unique solution in C/3,1/2(2, 3].

5. CONCLUSION

Here, we have studied the existence and uniqueness results for generalized fractional integrodifferential equations
via terminal value condition and minimal hypothesis. Further, the results obtained are justified by examples. In the
future, we are planning to extend the results for different fractional derivatives and numerous boundary conditions.
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