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Abstract

An analytical study is carried out to obtain the approximate solution for the Magnetohydrodynamic (MHD) flow

issue of Darcy-Forchheimer nanofluid containing motile microorganisms having viscous dissipation effect through
a non-linear extended sheet employing a new approximate analytical method namely Ananthaswamy-Sivasankari

Method (ASM) and also Modified Homotopy Analysis method (MHAM). The derived analytical solution is given

in explicit form and is compared with the numerical solution. The graphical results are interlined to reflect
the effects of various physical parameters involved in the problem. The numerical computation of the Nusselt

number, the local skin friction parameter, and the Sherwood number are compared and shown in the table. Faster

convergence is acquired using this strategy. The solution obtained by this method is closer to the exact solution.
Also, the solution is in the simplest and most explicit form. It is applicable for all initial and boundary value

problems with non-zero boundary conditions. This method can be easily extended to solve other non-linear higher
order boundary value problems in physical, chemical, and biological sciences.
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1. Introduction

Researchers were highly inspired to investigate the consequences of nanofluid flow as compared to basic fluid flows
nowadays. Nanofluid offers a wide range of uses, including heat transfer applications such as electronic cooling
systems, radiators, and heat exchangers. The laminar, free convection flow in such an open container employing
Lattice Boltzmann method (LBM) with the combination of carbon nanotube and Cu nanoparticles were numerically
performed by Choi [10] and he concluded that the Carbon nanotube nanoparticle performs better to boost convection
rate than Cu- nanoparticles. The second phase slipping flows of such a nanofluid on a stretching/shrinking sheet
deeply embedded in a dynamically layered porous medium with the addition of Ohmic as well as viscous dissipation
effects were studied by Ganesh et al. [12].

Darcy-Forchheimer flow changes the temperature distributions by playing a role like an energy source, which leads
to affected heat transfer rates. Forchheimer [11] established a square velocity term that is added to the equation of
velocity to illustrate the imprints of boundaries and inertia. This is what Muskat [22] referred to as the ”Forchheimer
term,” which is suitable for high Reynolds numbers. Forchheimmer [11] explained the flow of such an incompressible
fluid with variable fluid viscosity and changeable thermal conductivity using thermal radiation, Dufour and Soret as
well as heat and mass transfer across a linearly rotating porous vertical semi-infinite plate having suction and solved
with the use of the shooting method with Runge-Kutta fourth-order method and Newton-Raphson’s interpolation
scheme. Sadiq et al. [26] analyzed the Darcy–Forchheimer movement in magneto Maxwell fluid along a convectively
heated surface. Saif et al. [27] evaluated the Darcy-Forchheimer flow for nanofluid caused by a curved extended
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surface. The influence of viscous dissipation for both assisting and opposing flows and thermophoresis onto a blended
convection fluid of Darcy- Forchheimer within a soaked porous media was explained in Seddeek [29]. More applications
of the Darcy-Forchheimer flow can be found in [30–32].

In the work of Muhammad et al. [21], the Magnetohydrodynamic (MHD) elongated motion of Maxwell nanofluid
containing non-linear porous medium and convective temperature impacts was solved using Homotopy analysis tech-
nique analytically. The analysis of the Magnetohydrodynamic (MHD) extended flows of Maxwell nanofluid involving
the convective boundary condition with the consideration of some notable physical factors such as activation energy,
radiative heat flux and dynamic thermal conductivity were studied by Sajid et al. [28]. For further information on
the peculiarities for the flow of Magnetohydrodynamic Darcy-Forchheimer nanofluid via a non-linear stretching sheet,
see Rasool et al. [24]. A numerical investigation was conducted on the Magnetohydrodynamic (MHD) Williamson
nanofluid flow enabled to move over a porous medium that is separated from it by a flat surface that is non-linearly
extending and the second rule of thermodynamics was applied to analyze the fluid motion, energy, and temperature
transport including the components of entropy generation utilizing the Buongiorno model by Rasool et al. [25].

With the help of numerical methods, many problems have been evaluated easily in physical sciences. Akhter et al. [3]
described the irreversibility research study of steady flow including the magnetic forces among two infinitely stretched
discs located within a Darcy-Forchheimer medium. With the use of similarity transformations the dimensionless
formulation of the regulating equations was solved by the quasi linearization technique numerically. Ali et al. [4]
study the connection of the thermally and hydrodynamically formed flows over a vertical square duct only with the
magnetic field created with a located near wire, under the temperature boundary condition having uniform heat flux
over the unit axial length using the finite volume technique. Zakullah et al. [37] examined the numerical solution
for the Darcy-Forchheimer 3D flow of nanofluid through a rotating surface with thermal generation/absorption. The
numerical study of the Darcy–Forchheimer flows for nanofluid induced on an exponentially extending curved surface
was addressed in Hayat et al. [14]. Turk et al. [35] provided the finite element method (FEM) answer for the natural
convection flows of micro polar nanofluids under the influence on an auxiliary magnetic field.

Analytical methods give more accurate results as compared to numerical methods. There are many analytical
methods which provide an approximate solution for non-linear problems. Hayat et al. [13] established the convergence
series solution through the Optimal Homotopy Analysis method (OHAM) for three-dimensional flow of Williamson
nanoliquid over a non-linear stretchable surface with Darcy–Forchheimer porous medium fluid flow and he considered
the effects of thermophoresis and Brownian diffusion. Khan et al. [15] focused on three-dimensional micro polar
Darcy-Forchheimer nanofluid flow of water (H2O) based carbon nanotubes (CNTs). Nanofluid flow was simulated
in a moving system along with thermally transmitting flow of micropolar nanofluid and the governing equations
were resolved through HAM. The expression of Darcy-Forchheimer thin fluid flows of SWCNT-water nanoliquid and
corresponding heat transfer issue over an unstable stretching plate in two-dimensional using HAM was demonstrated
by Nasir et al. [23]. In [5–7], HAM is used in a wide variety of applications.

Ahmed et al. [1] investigated a comprehensive analysis of motile microorganisms and activation energy in the
flow of pure as well as hybrid nanoliquids subject to Darcy-Forchheimer medium and reported that the use of the
porous medium not only stables the flow but also maintains the thermal characteristics of the fluid. Ahmed et
al. [2] considered the mass and thermal transport flow from moving gyrotactic microorganisms (microbes) with solid
nanoparticles in the viscous dissipation effect, and indeed the flow model PDEs were numerically handled with the SOR
(successive over relaxation) technique. Shahid et al. [31] derived the solution of the characteristics of blood circulation
carrying gyrotactic microorganisms forced with a capillary comprising stretching medium and permeable throughout
the existence of a magnetic field via the aid of successive Taylor series linearization method (STSLM). Sohail et al. [34]
presented the entropy analysis of three-dimensional Maxwell nanofluid containing gyrotactic microorganism under the
phenomenon of thermal and energy transport with Cattaneo-Christov theory along with homogeneous-heterogeneous
reactions over a linear stretched surface. The bio-convection flow of Williamson nanofluid through a funnel in the
midst of motile gyrotactic microorganism was investigated by Waqas et al. [36].

As a consequence from the aforementioned articles, we have concentrated on the implications of such viscous
dissipation upon the Magnetohydrodynamic (MHD) Darcy-Forchheimer flow of nanoliquid containing gyrotactic mi-
croorganisms. The objective of this investigation is to provide the approximate solution of the considered non-linear
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Figure 1. Flow Diagram.

problem analytically in the closed and explicit manner after converting dimensionless equations. The computed results
are then compared with the numerical solution. The impacts of various physical parameters are graphically presented.

2. Mathematical formulation of the problem

Let us have a view at the persistent viscous, two-dimensional, unsteady Magnetohydrodynamic (MHD) Darcy-
Forchheimer flow of the nanofluid caused by an extending sheet that exhibits non-linear behavior, as reported by
Batool et al. [8]. The sheet continues to move along the x−axis with only a stretching speed of type Ubn = b0x

m,
where m and b0 > 0 are constant relative terms. The flow problem’s configuration is presented in Figure 1.

The current flow problem is described by the following system of differential equations
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The boundary conditions for the aforementioned equations are:

u = Ubn = b0x
m, v = 0, T = Tbn, C = Cbn, n = nbn at y = 0, (2.6)

u→ 0, T → TInf , C → CInf , n→ nInf as y →∞. (2.7)

Now let us define the dimensionless quantities
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1
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√
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x
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,
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√
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The velocity components u = ∂ψ
∂y and v = −∂ψ∂x help to construct a stream function ψ and η serve as a symbol for the

dimensionless similarity variable. The elements u and v contribute to Eq. (2.1) in the form of ψ. The transformation
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mentioned in Eq. (2.8) can be used to generate Eqs. (2.2) – (2.5) into the following ODE’s:

f ′′′ + ff ′′ −
[

2m

m+ 1

]
f ′2 −Me2f ′ − λf ′ − Fr(f ′)2 = 0, (2.9)

θ′′ + Pr
[
Nbθ′φ′ +Ntθ′2 + θ′f

]
+ PrEcf ′′2 = 0, (2.10)

φ′′ +
Nt

Nb
θ′′ + LePr(f ′φ′) = 0, (2.11)

χ′′Sc(fχ′)− Pe [χ′φ′ + φ′′(χ+ σ)] = 0. (2.12)

The dimensionless form of boundary conditions specified in Eqs. (2.6) and (2.7) is given by

f(0) = 0, f ′(0) = 1, θ(0) = 1, φ(0) = 1, χ(0) = 1 at η = 0, (2.13)

f ′(∞)→ 0, θ(∞)→ 0, φ(∞)→ 0, χ(∞)→ 0 as η →∞, (2.14)

where primes symbolize derivatives with respect to η. Moreover, Me is a magnetic parameter, Nt is a thermophoresis
parameter, Nb is a parameter of Brownian motion, Le is a Lewis number, λ is a porosity parameter, Ec denotes a
Eckert number, Pr is a Prandtl number, Sc is a Schmidt number, Pe indicates a Peclet number, σEc is a constant
term and Fr is the Forchheimer parameter which has the following mathematical forms:
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3. Approximate analytical solution using ASM and MHAM

For the purpose of estimating the third-order non-linear ordinary differential equations, a new technique known
as the Ananthaswamy-Sivasankari method (ASM) [9, 33] is introduced. One can use it to resolve both linear as
well as non-linear differential equations. It is also simple to adapt this approach to deal with some other non-linear
such boundary value issues in physical, chemical, and biological sciences, especially for MHD flow problems in physical
science. However, the proposed new method is applicable to problems involving initial and boundary values. Additional
boundary conditions can be produced for the differential equation and its derivatives. It’s really simple to understand
and apply the technique. The solution contains only three arbitrary constants which depend upon the order of the
differential equation and it is easy to find the values of these arbitrary constants. If we can apply HAM, HPM, NHPM,
ADM, and VIM, it will be take two or more iterations but this method takes a single iteration which contains all
the parameters involved in the equation. The error percentage will be less than 0.3% when comparing the proposed
method with the exact solution/numerical simulation/numerical solution. In Appendix-A, the basic concept of ASM
is explained.

Many different difficulties in science and engineering have been resolved effectively using the Homotopy analysis
method. It is a non-perturbative analytical method for getting series solutions to non-linear equations. HAM provides
the ability to modify and regulate the convergence of a solution via the so-called convergence-control parameter in
comparison to other perturbative and non-perturbative analytical methods. This has leading to HAM emerging as the
most efficient technique for deriving analytical solutions in terms of the unknown function and its derivatives. Previous
applications of HAM have primarily concentrated on non-linear differential equations for which the non-linearity is such
a polynomial in the work of Liao [16–20]. For non-linear issues, Liao [16–20] created the Homotopy analysis approach,
which is an effective analytical method. It offers an analytical solution in terms of an infinite power series. However, it
is necessary in practice to assess this result and get numerical values using the infinite power series. The entire system
of differential equations was solved to examine the precision with the Homotopy analysis technique (HAM) solution
with a finite number of terms. We have a simple mechanism to control and modify the convergence domain of the



700 S. SIVASANKARI AND V. ANANTHASWAMY

solution series owing to the auxiliary parameter, which is a component in the homotopy analysis approach. The basic
concept of MHAM is provided in Appendix-B.

The results obtained for the non-dimensional velocity, temperature, concentration, and density distributions are
provided below along with their analytical derivation.

3.1. Approximate Analytical solution of Velocity distribution using ASM [9, 33]. The following is the
approximate analytical solution for the velocity distribution in Eq. (2.9) which satisfies the following boundary
conditions

f(η) = l + qeaη + re−aη, (3.1)

f ′(η) = aqeaη − are−aη. (3.2)

Utilizing the boundary conditions in Eqs. (2.13) and (2.14), we determine the value for the parameters l, q, and r as
follows:
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1

a
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a
. (3.3)

Thus, the Eq. (3.1) becomes
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On solving the Eq. (3.6), we get the value of the parameter a, which is given by

a = ±

√(
2
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)
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Hence, an approximate analytical solution for the velocity distribution is found by inserting an Eq. (3.7) into Eq.
(3.1) as follows:

f(η) =
1

a
− 1

a
e−aη, (3.8)

where a is obtained in Eq. (3.7).

3.2. Approximate analytical solution of temperature, concentration and density distribution using
MHAM [5–7]. After substituting an Eq. (3.8) into the Eqs. (2.10), (2.11), and (2.12), we get the following trans-
formed temperature, concentration, and density distribution equations
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We generate the following Homotopy for the Eqs. (3.9), (3.10), and (3.11) as

(1− p)θ′′ = hp
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)
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The initial approximation for Eqs. (3.12) to (3.14) is provided by

θ0(0) = 1, θ0(∞)→ 0 and θi(0) = 0, θi(∞)→ 0, i = 1, 2, 3, . . . , (3.15)

φ0(0) = 1, φ0(∞)→ 0 and φi(0) = 0, φi(∞)→ 0, i = 1, 2, 3, . . . , (3.16)

χ0(0) = 1, χ0(∞)→ 0 and χi(0) = 0, χi(∞)→ 0, i = 1, 2, 3, . . . . (3.17)

The approximate analytical solutions to the Eqs. (3.9) to (3.12) are:

θ = θ0 + pθ1 + p2θ2 + . . . , (3.18)

φ = φ0 + pφ1 + p2φ2 + . . . , (3.19)

χ = χ0 + pχ1 + p2χ2 + . . . . (3.20)

Substituting the Eqs. (3.18) to (3.20) into the Eqs. (3.12) to (3.14) respectively and comparing the coefficients of like
powers of p, we acquire the following equations

p0 : θ′′0 = 0, (3.21)

p1 : θ′′1 − θ′′0 = h
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In this stage, by using MHAM, the initial guessing solutions for the Eqs. (3.9) to (3.11) which satisfies the boundary
conditions in Eqs. (3.15) to (3.17) are:

θ0(η) = e−η, (3.27)

φ0(η) = e−η, (3.28)

χ0(η) = e−η. (3.29)
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On solving the Eqs. (3.22), (3.24), and (3.26) with the use of Eqs. (3.27) to (3.29) and utilizing the boundary
conditions in Eqs. (3.15) to (3.17), we get the following results
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(
h+ 1− h

a
+
hPr (Nb+Nt)
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According to the HAM technique, we have

θ = lim
p→1
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φ = lim
p→1

φ(η) = φ0 + φ1, (3.34)

χ = lim
p→1

χ(η) = χ0 + χ1. (3.35)

Hence, the approximate analytical solutions of the temperature, concentration, and density distribution equations are
obtained by substituting the Eqs. (3.27) to (3.32) into the Eqs. (3.33) to (3.35) respectively, as follows
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4. Results and discussion

In this section, we have discussed the impacts of several physical parameters involved in this flow problem. Also,
we have displayed a comparison between the analytical solution obtained in Eqs. (3.8), (3.36), (3.37), and (3.38) of
dimensionless velocity, temperature, concentration and density distribution respectively with the numerical results
using Successive Over Relaxation (SOR) method described in [8].

Figures 2 to 13 represent the comparison of analytical results and numerical results for dimensionless velocity,
temperature, concentration and density distribution respectively with various values of the physical parameters such
as the Magnetic parameter Me, Parameter of Brownian motion Nb, porosity parameter λ, Lewis number Le, Prandtl
number Pr, Schmidt number Sc, Parameter of thermophoresis Nt, Peclet number Pe, Eckert number Ec, Forchheimer
parameter Fr, and Electric conductivity σEc.

Figures 2 to 4 show the comparison on the dimensionless velocity using Eq. (3.8) with the numerical result presented
in [8] for varying values of Me, λ and Fr. From Figure 2, it is observed that by raising the value of the Magnetic
parameter Me, the velocity decreases. According to Figure 3, it is depicted that by increasing the value of the porosity
parameter λ, the velocity decreases. As in Figure 4, the velocity decreased by increasing the amount of the Forchheimer
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Figure 2. The dimensionless velocity with the dimensionless axial coordinate η for some specified
values of λ, Fr,m and varying amounts of Me.

parameter Fr. Also, Table 1 clearly evaluated the analytical and numerical results of the velocity f ′′(0) for several
values of the physical quantities Me, λ and Fr.

Figures 5 to 7 interline the comparison with the dimensionless temperature using Eq. (3.36) and numerical result
presented in [8] for varying values of Me, λ and Fr. Figure 5 illustrates that the temperature rises by increasing
the value of the Magnetic parameter Me. From Figure 6, it is noted that by raising the amount of the porosity
parameter λ, the temperature increases. According to Figure 7, the temperature increased by increasing the value
of the Forchheimer parameter fr. Table 2 shows the analytical and numerical results of the temperature −θ′(0) for
different amounts of the physical parameters Nt,Nb, λ, Fr,Ec, and Me.

Figures 8 to 10 illustrate the comparison between both the dimensionless concentration using Eq. (3.37) and
numerical result presented in [8] for several amounts of Me, λ, and Fr. Figure 8 depicts that the concentration rises
by raising the value of the magnetic parameter Me. Also, from Figure 9, it is understood that by increasing the amount
of the porosity parameter λ, the concentration increases. From Figure 10, the concentration increased by raising the
value of the Forchheimer parameter Fr. Table 3 shows the analytical and numerical results of the concentration −φ′(0)
for changing values of the physical parameters Nt,Nb, λ, Fr, Le and Me.

Figures 11 to 13 demonstrate the comparison on the dimensionless density using Eq. (3.38) with the numerical
result presented in [8] for the several values of Me, λ, and Fr. According to Figure 11, it is clearly noted that by
raising the amount of the Magnetic parameter Me, the density increases. From Figure 12, indicates that by raising
the value of the porosity parameter λ, the density increases. In Figure 13, the density increased by raising the amount
of the Forchheimer parameter Fr.

The following significant observations are highlighted from the results:
• As the values of magnetic, porosity and Forchheimer parameters increase, the velocity drops.
• The temperature, microorganism’s concentration, and microorganism’s density increase by raising the value of
magnetic, porosity and Forchheimer parameters.

Conclusion

The Magnetohydrodynamic (MHD) flow issue of Darcy-Forchheimer nanoliquid including motile microorganisms
having viscous dissipation effect over a non-linear extended sheet was examined analytically. The approximate solution
was derived using a new approximate analytical method Ananthaswamy-Sivasankari Method (ASM) and Modified
Homotopy Analysis Method (MHAM) analytically. The achieved analytical result was reported in explicit form and
compared to the numerical solution. The influence of many physical parameters involved in the problem was displayed
graphically. Nusselt number, local skin friction coefficient, and also Sherwood number were estimated and shown
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Table 1. Comparison of analytical and numerical solution for the local skin friction coefficient f ′′(0)
with varying amounts of the parameters λ,Me and Pr.

λ Me Fr
Numerical

f ′′(0)
Analytical

f ′′(0)
Error

%

0 0.2 0.9 -1.423938 -1.423643 0.020721

0.3 0.2 0.9 -1.53581 -1.535885 0.004883

0.5 0.2 0.9 -1.606089 -1.606745 0.040828

0.2 0 0.9 -1.423938 -1.423539 0.028029

0.2 0.2 0.9 -1.499455 -1.499047 0.027217

0.2 0.4 0.9 -1.571352 -1.571460 0.006873

0.2 0.2 0 -1.267705 -1.253437 1.138310

0.2 0.2 0.3 -1.349067 -1.348903 0.012158

0.2 0.2 0.6 -1.426118 -1.426025 0.006522

Average error percentage 0.142838

Table 2. Comparison of both analytical and numerical solutions for the Nusselt number −θ′(0) for
numerous amounts of the parameters λ,Me,Nb,Nt, Fr and Ec.

Nt Nb λ Fr Ec Me
Numerical
−θ′(0)

Analytical
−θ′(0)

Error
%

0.1 0.2 0.2 0.9 0.1 0.2 0.445417 0.445879 0.103616

0.2 0.2 0.2 0.9 0.1 0.2 0.415899 0.415912 0.003126

0.4 0.2 0.2 0.9 0.1 0.2 0.385252 0.386140 0.229968

0.1 0.1 0.2 0.9 0.1 0.2 0.467118 0.469900 0.592041

0.1 0.2 0.2 0.9 0.1 0.2 0.432433 0.432522 0.020577

0.1 0.4 0.2 0.9 0.1 0.2 0.391482 0.391985 0.128321

0.1 0.2 0.0 0.9 0.1 0.2 0.456385 0.457368 0.214925

0.1 0.2 0.3 0.9 0.1 0.2 0.426793 0.436887 2.310437

0.1 0.2 0.5 0.9 0.1 0.2 0.414351 0.416361 0.482754

0.1 0.2 0.2 0.0 0.1 0.2 0.466133 0.466471 0.072459

0.1 0.2 0.2 0.3 0.1 0.2 0.446389 0.446509 0.026875

0.1 0.2 0.2 0.6 0.1 0.2 0.437961 0.438139 0.040626

0.1 0.2 0.2 0.9 0.0 0.2 0.499539 0.499686 0.029418

0.1 0.2 0.2 0.9 0.1 0.2 0.431806 0.431826 0.004632

0.1 0.2 0.2 0.9 0.2 0.2 0.376081 0.376606 0.139403

0.1 0.2 0.2 0.9 0.1 0.0 0.456385 0.456456 0.015555

0.1 0.2 0.2 0.9 0.1 0.2 0.432169 0.433079 0.210123

0.1 0.2 0.2 0.9 0.1 0.4 0.419783 0.419877 0.022388

Average error percentage 0.258180
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Figure 3. The dimensionless velocity with the dimensionless axial coordinate η for varying values of
λ and certain fixed values of Me,Fr,m.

Figure 4. The dimensionless velocity with the dimensionless axial coordinate η in some fixed amounts
of λ,Me,m and distinct values of Fr.

in the table. The overall absolute error percentage is less than 0.3%, when comparing the analytical solution with
the numerical solution. It is not ensured that this method is applicable to partial differential equations. It is not
guaranteed that this method is closer to the exact/numerical solution/numerical simulation when the given ODE has
zero boundary conditions.
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Figure 5. The dimensionless temperature with the dimensionless axial coordinate η for distinct
values of Me and in some particular amounts of λ, Fr,Nb,Nt, Pr,m and Ec.

Figure 6. The dimensionless temperature with the dimensionless axial coordinate η for different
amounts of λ and particular values of Me,Fr,Nb,Nt, Pr,m and Ec.
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Figure 7. The dimensionless temperature with the dimensionless axial coordinate η for several
amounts of Fr and in some constant values of Me, λ,Nb,Nt, Pr,m and Ec.

Figure 8. The dimensionless concentration with the dimensionless axial coordinate η including vary-
ing values of Me and some constant amounts of λ, Fr,Nb,Nt, Pr,m and Le.
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Figure 9. The dimensionless concentration with the dimensionless axial coordinate η for distinct
amounts of λ and certain fixed values of Me,Fr,Nb,Nt, Pr,m and Le.

Figure 10. The dimensionless concentration with the dimensionless axial coordinate η involving
different amounts of Fr and particular amounts of Me, λ,Nb,Nt, Pr,m and Le.
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Figure 11. The dimensionless density with the dimensionless axial coordinate η considering some
constant amounts of λ, Fr, Sc, Pe,m, σ and distinct values of Me.

Figure 12. The dimensionless density with the dimensionless axial coordinate η in particular values
of Me,Fr, Sc, Pe,m, σ and varying values of λ.
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Figure 13. The dimensionless density with the dimensionless axial coordinate η assuming certain
fixed values of Me, λ, Sc, Pe,m, σ and different amounts of Fr.

Table 3. Comparison with analytical and numerical findings for the Sherwood number −φ′(0) with
several values of the parameters λ,Me,Le,Nb,Nt and Fr.

Me λ Le Nb Nt Fr
Numerical
−φ′(0)

Analytical
−φ′(0)

Error
%

0.0 0.2 0.8 0.2 0.1 0.9 0.430925 0.431092 0.038739

0.2 0.2 0.8 0.2 0.1 0.9 0.401441 0.401925 0.120420

0.4 0.2 0.8 0.2 0.1 0.9 0.397490 0.397872 0.096011

0.2 0.0 0.8 0.2 0.1 0.9 0.430925 0.431075 0.034797

0.2 0.3 0.8 0.2 0.1 0.9 0.400779 0.400781 0.000499

0.2 0.5 0.8 0.2 0.1 0.9 0.396747 0.396773 0.006553

0.2 0.2 0.3 0.2 0.1 0.9 0.307160 0.307202 0.013672

0.2 0.2 0.5 0.2 0.1 0.9 0.311506 0.311593 0.027921

0.2 0.2 0.7 0.2 0.1 0.9 0.363977 0.364009 0.008791

0.2 0.2 0.8 0.1 0.1 0.9 0.328577 0.328798 0.067215

0.2 0.2 0.8 0.2 0.1 0.9 0.392125 0.392282 0.040022

0.2 0.2 0.8 0.4 0.1 0.9 0.447677 0.447635 0.009383

0.1 0.2 0.8 0.2 0.1 0.9 0.429622 0.429705 0.019316

0.1 0.2 0.8 0.2 0.2 0.9 0.335406 0.335479 0.021760

0.1 0.2 0.8 0.2 0.4 0.9 0.237252 0.237311 0.024862

0.2 0.2 0.8 0.7 0.1 0.0 0.431477 0.431434 0.009966

0.2 0.2 0.8 0.7 0.1 0.3 0.402987 0.402998 0.002730

0.2 0.2 0.8 0.7 0.1 0.6 0.399828 0.399853 0.006252

Average error percentage 0.030495
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Appendix

Appendix A: Basic Concept of Ananthaswamy-Sivasankari Method [9, 33]. Let us consider the non-linear
boundary value problem

q : f(y, y′, y′′, y′′′) = 0, (A. 1)

where q represents the third order non-linear differential equation such that y = y(x, c, d, ...) in which c, d are given
parameters and x ∈ [L,U ] can be finite or infinite considering the associated boundary conditions:

At x = L, y(x) = yL0 (or) y′(x) = yL1 (or) y′′(x) = yL2

At x = U, y(x) = yU0
(or) y′(x) = yU1

(or) y′′(x) = yU2

}
(A. 2)

Assume that the approximate analytical solution for the non-linear equations is an exponential function of the form

y(x) = l +meax + ne−ax. (A. 3)

By resolving the following non-linear differential equations, the unknown coefficients l,m and n are discovered:

y(L) = l +meaL + ne−aL = yL0

y′(L) = ameaL − ane−aL = yL1

y′′(L) = a2meaL + a2ne−aL = yL2

 (A. 4)

y(U) = leaU +me−aU = yU0

y′(U) = aleaU − ame−aU = yU1

y′′(U) = a2leaU + a2me−aU = yU2

 (A. 5)

The unknown parameters l,m and n may be computed using Eqs. (A. 4) and (A. 5).
The following non-linear differential equations are formed by substituting an Eq. (A. 3) into Eq. (A. 1).

q : f(y(x, l,m, n, a, c, d), y′(x, l,m, n, a, c, d), y′′(x, l,m, n, a, c, d), y′′′(x, l,m, n, a, c, d)) = 0. (A. 6)

This equation holds true at x, where x ∈ [L,U ]. By resolving Eq. (A. 6), the unknown parameter a can be
identified in terms of the existing parameters c and d.

Appendix B: Basic Concept of Modified Homotopy Analysis Method. Consider the differential equation
stated below:

N [u(t)] = 0, (B. 1)

where N represents the non-linear operator, t indicates an independent variable and u(t) refers to an unknown function.
For the sake of simplicity, we disregard all boundaries or initial conditions that could be handled similarly. By means
of generalizing the conventional Homotopy technique, Liao produced the so-called zero-order deformation equation as
follows:

(1− p)L[φ(t; p)− u0(t)] = phH(t)(N [φ(t; p)], (B. 2)

where p ∈ [0, 1] denotes the embedding parameter, h 6= 0 refers to a non-zero auxiliary parameter, and h ∈ [−1, 1],
H(t) 6= 0 is an auxiliary function, L is an auxiliary linear operator, u0(t) specifies an initial guess of u(t), φ(t; p) , is
an unknown function. It is essential to note that one has a lot of choices in selecting auxiliary unknowns in HAM.
Obviously, when p = 0 and p = 1, it holds:

φ(t; 0) = u0(t) φ (t; 1) = u(t), (B. 3)

respectively. Thus as p increases from 0 to 1, the solution φ(t; p) varies from the initial guess u0(t) to the solution
u(t). Expanding φ(t; p) in the Taylor series with respect to p, we have:

φ(t; p) = u0(t) +

+∞∑
m=1

um(t)pm, (B. 4)
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where

um(t) =
1

m!

∂mφ(t; p)

∂pm
|p = 0. (B. 5)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h , and the auxiliary function are so properly
chosen, the series (B. 4) converges at p = 1 then we have

u(t) = u0(t) +

+∞∑
m=1

um(t). (B. 6)

Differentiating (B. 2) for m times with respect to the embedding parameter p, and then setting p = 0. Finally, dividing
them by m!, we will have the so-called mth -order deformation equation as follows:

L[um −Kmum−1] = hH(t)Rm(um−1), (B. 7)

where

Rm(um−1) =
1

(m− 1)!

∂m−1(N [φ(t; p)])

∂pm − 1
|p = 0, (B. 8)

and

Km =

{
0, m ≤ 1,

n, otherwise.
(B. 9)

Applying L−1 on both sides of the Eq. (B. 7), we have

um(t) = Kmum−1(t) + hL−1 [H(t)Rm(um−1)] . (B. 10)

In such a manner, it is simple to attain um for m ≥ 1 at mth order as follows:

u(t) =

M∑
m=0

um(t). (B. 11)

When M → +∞, we attain an accurate approximation of the original Eq. (B. 1). We suggest Liao [16–20] for more
information on the convergence of the aforementioned approach. If Eq. (B. 1) affords a unique solution, then this
approach will yield it.

Appendix C: Nomenclature.
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symbol Meaning
u x−Component of velocity
v y−Component of velocity
ρFl Fluid’s density
ρNp Nanoparticles’ density
µ Dynamic viscosity
v Kinematic viscosity
T Temperature
b0 Positive constant
cP Specific heat
K∗ Permeability of medium
cB Drag force coefficient
DBm Brownian coefficient
DTp Thermophoresis diffusion coefficient
DGm Microorganism diffusion coefficient
σEc Electric conductivity
bch Chemotaxis constant
Wcs Maximum swimming speed of cell
TInf Ambient temperature
Tbn Temperature at surface of sheet
α Thermal diffusivity
Bc Strength of magnetic field
Ec Eckert number
n Microorganisms’ concentration
C Volume fraction of nanoparticles
Pr Prandtl number
Me Magnetic parameter
Sc Schmidt number
Le Lewis number
Pe Peclet number
Nt Parameter of thermophoresis
Nb Parameter of Brownian motion
η Dimensionless variable
λ Porosity parameter
Fr Forchheimer parameter
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