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Abstract In this present work, the Kudryashov method and the functional variable method are

used to construct exact solutions of the complex Korteweg-de Vries (KdV) equation.
The Kudryashov method and the functional variable method are powerful methods
for obtaining exact solutions of nonlinear evolution equations.
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1. Introduction

It is well known that nonlinear complex physical phenomena are related to non-
linear evolution equations (NLEEs) which are involved in many fields from physics,
biology, chemistry, mechanics, etc. As mathematical models of the phenomena, the
investigation of exact solutions of NLEEs will help us to understand these phenom-
ena better. Many effective methods for obtaining exact solutions of NLEEs have been
established and developed, such as the solitary wave ansatz method [1, 2, 3], the first
integral method [4, 5, 6], Jacobi elliptic function method [7, 8, 9], F-expansion method
[10, 11, 12], the functional variable method [13, 14, 15], modification of truncated ex-
pansion method [16, 17, 18, 19, 20, 21] and so on.
The aim of this paper is to construct exact solutions of the complex KdV equation
by using the Kudryashov method and the functional variable method.
Since the 80s of last century, the coupled KdV equations as an important mathemat-
ical model has been studied widely. In 1981, Fuchssteiner [22] made a detailed study
of four coupled KdV equations and gave the bi-Hamiltonian structure of them. One
coupled set of KdV equations is the complex-coupled KdV equations

ut = uxxx + 6uux + 6ϕϕx, (1.1)

ϕt = ϕxxx + 6uϕx + 6uxϕ. (1.2)

The integrability of the equations was discussed by the bi-Hamiltonian structure [22,
23] and Lax pair [24]. Later, Oevel [23] pointed out that” inserting a complex ansatz
u+ iϕ into the KdV it is a complex version of the KdV ” and the complex version of
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the KdV possess two conservation laws in every order.
In this paper we consider the complex version of KdV equation

Ut + µ1UUx + µ3Uxxx = 0, (1.3)

where U(x, t) is a complex-valued function of the spatial variable x and the temporal
variable t, µ1 and µ3 are real constants. Eq. (1.3) is completely equal to Eqs. (1.1),
(1.2). In fact, letting µ1 = µ3 = 1, substituting the U(x, t) = p(x, t) + iq(x, t) into
the Eq. (1.3), separating the real part and the imaginary part from Eq. (1.3), we
can obtain a set of equations about p(x, t) and q(x, t). After we rewrite the equations
under the transformation: p(x, t) → 6u(x, t), q(x, t) → 6iϕ(x, t), x → −x, we can
obtain Eqs. (1.1), (1.2).
This paper is organized as follows: In section 2 and 3, we describe briefly the func-
tional variable method and the Kudryashov method. In section 4, we apply the
proposed methods to solve the complex KdV equation. In section 5, Conclusions will
be presented in final.

2. The functional variable method

Consider a nonlinear evolution equation

P (u, ut, ux, utt, uxt, uxx, . . .) = 0, (2.1)

where u = u(x, t) is an unknown complex-valued function, P is a polynomial in
u = u(x, t) and its various partial derivatives, in which the highest order derivatives
and nonlinear terms are involved.
First we introduce the new wave variable as combining the independent variables x
and t into one variable ξ = k(x− ct), we suppose that

u(x, t) = U(z), z = iξ. (2.2)

The travelling wave variable (2.2) permits reducing Eq. (2.1) to an ODE for U = U(z)

P (U,−ikcU ′, ikU ′, . . .) = 0, (2.3)

where U ′ = dU
dz .

Let us make a transformation in which the unknown function U is considered as a
functional variable in the form

Uz = F (U) (2.4)

and some successive derivatives of U are

Uzz =
1

2
(F 2)′,

Uzzz =
1

2
(F 2)′′

√
F 2,

Uzzzz =
1

2
[(F 2)′′′ + (F 2)′′(F 2)′],

... (2.5)
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The ODE (2.3) can be reduced in terms of U,F and its derivatives on using the
expressions of (2.5) into (2.3) gives

R(U,F, F ′, F ′′, F ′′′, F (4), . . .) = 0. (2.6)

The key idea of this particular form (2.6) is of special interest because it admits ana-
lytical solutions for a large class of nonlinear wave type equations. After integration,
Eq. (2.6) provides the expression of F , and this, together with (2.4), give appropriate
solutions to the original problem.

3. Modification of truncated expansion method

The main steps of the Kudryashov method are the following:
Step1. Determination of the dominant term with highest order of singularity. To
find dominant terms, we substitute

U = z−p, (3.1)

to all terms of Eq. (2.3). Then we compare degrees of all terms of Eq. (2.3) and
choose two or more with the lowest degree. The maximum value of p is the pole of
Eq. (2.3) and we denote it as N . This method can be applied when N is integer. If
the value N is non-integer, one can transform the equation studied.
Step2. We look for exact solution of Eq. (2.3) in the form

U(z) =
N∑
i=0

biQ
i(z), (3.2)

where bi(i = 0, 1, . . . , N) are constants to be determined later, such that bN ̸= 0,
while Q(z) has the form

Q(z) =
1

1 + dexp(z)
, (3.3)

which is a solution to the Riccati equation

Q′(z) = Q2(z)−Q(z),

where d is arbitrary constant.
Step3. We can calculate necessary number of derivative of function U . It is easy to
do using Maple or Mathematica package. Using case N = 2 we have some derivatives
of function U(z) in the form

U = b0 + b1Q+ b2Q
2,

Uz = −b1Q+ (b1 − 2b2)Q
2 + 2b2Q

3,

Uzz = b1Q+ (−3b1 + 4b2)Q
2 + (2a1 − 10a2)Q

3 + 6b2Q
4, (3.4)

Uzzz = −b1Q+ (7b1 − 8b2)Q
2 + (−12b1 + 38b2)Q

3 + (6b1 − 54b2)Q
4 + 24b2Q

5.

Step4. We substitute expressions given by Eqs. (3.2)-(3.4) in Eq. (2.3). Then we
collect all terms with the same powers of function Q(z) and equate expressions to
zero. As a result we obtain algebraic system of equations. Solving this system we get
the values of unknown parameters.
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4. Applications

In this section, we construct the exact travelling wave solution to Eq.(1.3) using
the presented methods. Firstly, we propose a complex travelling wave solution to the
complex KdV equation in the form

U(x, t) = U(z), z = ik(x− ct), (4.1)

where k and c are real constants to be determined later.
Substituting (4.1) into (1.3), we have

cU ′ − µ1UU ′ + k2µ3U
′′′ = 0, (4.2)

where U ′ = dU(z)
dz .

Integrating Eq.(4.2) with respect z and considering the constant of integration to be
zero, we get

cU − µ1U
2 + k2µ3U

′′ = 0. (4.3)

4.1. The functional variable method to solve the complex KdV equation.
We use the transformation

Uz = F (U), (4.4)

that will convert Eq.(4.3) to

(F 2(U))′

2
=

−2c

k2µ3
U +

µ1

k2µ3
U2. (4.5)

According to Eq.(2.5), we get from Eq (4.5) the expression of the function F (U) as

F (U) =

√
−c

k2µ3
U

√
1− µ1

3c
U (4.6)

Using transformation (2.4), and then setting the constants of integration to zero, we
can obtain the following result:

U(z) = − 3c

µ1
csch2(

1

2

√
−c

k2µ3
z) (4.7)

When c
µ3

< 0, we have the following hyperbolic solutions:

U1(x, t) = − 3c

µ1
csch2(

1

2

√
−c

k2µ3
(ik(x− ct))), (4.8)

U2(x, t) =
3c

µ1
sech2(

1

2

√
−c

k2µ3
(ik(x− ct))). (4.9)

When c
µ3

> 0, we have the following periodic solutions:

U3(x, t) =
3c

µ1
csc2(

1

2

√
c

k2µ3
(ik(x− ct))), (4.10)

U4(x, t) =
3c

µ1
sec2(

1

2

√
c

k2µ3
(ik(x− ct))). (4.11)
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4.2. The Kudryashov method to solve the complex KdV equation. The pole
order of Eq. (4.3) is N = 2. So we look for solution of Eq. (4.3) in the following form

U(z) = b0 + b1Q+ b2Q
2 (4.12)

Substituting Eq. (4.12) into Eq. (4.3), we obtain the system of algebraic equations
in the following form

Q0 : cb0 −
µ1

2
b20 = 0,

Q1 : cb1 − µ1b0b1 + k2µ3b1 = 0,

Q2 : cb2 −
µ1

2
(b21 + 2b0b2) + k2µ3(−3b1 + 4b2) = 0,

Q3 : −µ1b1b2 + k2µ3(2b1 − 10b2) = 0,

Q4 : −µ1

2
b22 + 6k2µ3b2 = 0.

Solving the algebraic equations above, yields:

b0 =
2k2µ3

µ1
, b1 = −12k2µ3

µ1
, b2 =

12k2µ3

µ1
, c = k2µ3. (4.13)

Using ansatz given by Eq. (4.12), we obtain the following travelling wave solution of
Eq. (4.3)

U(z) =
2k2µ3

µ1
− 12k2µ3

µ1
(

1

1 + dexp(z)
) +

12k2µ3

µ1
(

1

1 + dexp(z)

2

). (4.14)

where k is arbitrary constant.
Then the exact solution to Eq. (1.3) is written as

U(x, t) =
2k2µ3

µ1
− 12k2µ3

µ1
(

1

1 + dexp(ik(x− k2µ3t))
)

+
12k2µ3

µ1
(

1

1 + dexp(ik(x− k2µ3t))

2

).

5. Conclusions

Modification of truncated expansion method and the functional variable method
are applied successfully for solving the complex KdV equation. Compared to the
methods used before, one can see that these methods are direct, concise and effective.
Moreover, the methods can also be used to many other nonlinear evolution equations.
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