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Abstract

..

In this paper, a spectral collocation method for solving nonlinear pantograph type delay differential equations
is presented. The basis functions used for the spectral analysis are based on Chebyshev, Legendre, and Jacobi
polynomials. By using the collocation points and operations matrices of required functions such as derivative

functions and delays of unknown functions, the method transforms the problem into a system of nonlinear algebraic
equations. The solutions of this nonlinear system determine the coefficients of the assumed solution. The method
is explained by numerical examples and the results are compared with the available methods in the literature. It
is seen from the applications that our method gives more efficient results than that of the reported methods.
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1. Introduction

Delay differential equations (DDEs) and functional differential equations have an important place in science and
engineering as many of the problems in these fields are characterized by such equations. Some of the examples include
the models regarding the spread of diseases, subjects in climate science, applications regarding quantum dot lasers,
and electronics engineering. The pantograph equation which is a class of first order delay differential equations is
defined by

u′(x) = au(x) + bu(qx), x ∈ I = [0, T ], 0 < q < 1. (1.1)

with initial condition u(0) = u0. The above equation is emerged as a mathematical modeling of the wave motion in
the current line between an electric locomotive and an upper catheter wire. Later, this equation was developed to the
following generalized delay differential form

y(m)(x) +
J∑

j=0

m−1∑
k=0

Pjk(x)y
(k)(λjkx+ µjk) = f(x), 0 ≤ x ≤ b, (1.2)

and its solutions have been studied by various authors. The above generalized Pantograph equation has vast application
in quantum calculus [6], population growth [17, 18], electric locomotive [20], control theory [26], dynamics of neural
networks, etc.

Solutions to lower versions of these equations have been done using Berstein polynomial [11], First Boubaker
polynomials [3], Gennochi polynomial [10] and orthoexponential functions collocation method [2]. In 2017, Rahimkhani
studied the Pantograph equations using the Bernoulli wavelet method [22]. In 2018, Chang studied first order linear
pantograph equation using the modified Chebyshev collocation method [28]. The Taylor operation method [30] was
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used by Yuzbasi to study the equation. In 2019, Gumgum studied different cases of neutral delay pantograph equations
using the Legendre wavelets method [8] and Lucas collocation method of nonlinear delay differential equations [7].
Pantograph delay differential equations were solved using fractional-order hybrid Bessel functions by Dehestani et al
[4] in 2020. Wang solved the nonlinear Pantograph equation using Jacobi spectral approximation [29] and shifted
Chebyshev polynomials [27]. In 2021, Jafari et al. solved the delay differential equations using transfered Legendre
polynomials. In the same year, Jaiswal and Yadav [12] proposed an algorithm using wavelets methods.

It is clear from the above survey that, any new numerical method that improves the earlier results with very
good accuracy that can be obtained with less computational time and mathematical effort are always welcome in
the literature. Hence, in the present study, we apply the spectral collocation method to study higher-order delay
differential equations.

2. Present study

In this paper, we consider higher order linear/ nonlinear delay differential equations which can be represented in a
generalized form as follows:

w(m)(t) =

m1∑
r=0

m∑
s=0

prs(t)w
(s)(αrst+ βrs)) +

m2∑
j=0

m∑
k=0

m∑
l=0

hjkl(t)w
(k)(αjklt+ βjkl))w

(l)(γjklt+ µjkl) + f(t) (2.1)

with initial conditions w(θ) = Vi , where 0 ≤ θ ≤ m− 1 and 0 ≤ i ≤ m− 1
where k ≤ l, 0 ≤ m1,m2 ≤ m. prs(t), hjkl(t) can be either a constant or a variable function.

In this paper, we have studied higher and generalized pantograph equation given by (2.1). It is also noted that this
type of nonlinear generalized pantograph equation has not yet been numerically studied by the spectral method using
different polynomials in the literature. In our study, we have solved the higher-order delay differential equations using
the spectral collocation method and obtained its solution using three different basis functions namely Chebyshev,
Legendre, and Jacobi polynomials. In this paper, a set of twelve different cases of the general equation (2.1) has
been considered to study for which analytical solutions exist. The twelve different cases are (i) First order linear
delay differential equations with constant coefficients (ii) First order linear delay differential equations with variable
coefficients (iii)First order nonlinear delay differential equations with variable coefficients (iv) Second order linear
singularly delay equation with a variable coefficient (v) Second order nonlinear delay differential equations with
constant coefficients (vi) Third order nonlinear delay differential equations with constant coefficients (vii) Third order
linear delay differential equations with variable coefficients (viii) Third order nonlinear delay differential equations
(ix) Third order linear time varying delay equation with constant coefficient (x) Fourth order linear delay differential
equations with variable coefficients (xi) Fifth order linear delay differential equations with variable coefficients and
(xii) Fifth order linear time varying delay differential equations with variable coefficients.

All these examples are compared with results available in the literature. We show that the spectral method is
computationally efficient, easily implementable, and more accurate results can be obtained with least mathematical
effort and the less computational time.

Our presentation is organized as follows: In the next section, the mathematical and numerical simplification of
the governing equation are explained in a simple manner. In section 4, twelve examples of analytical solutions that
are already available in the literature have been considered and solved using the spectral collocation method. The
spectral results are compared with the analytical results and their error analysis are tabulated. Numerical results
and discussions follow with several tables and figures. The paper ends with the conclusions highlighting the various
findings from the present study.

3. Method of solution

Spectral collocation analysis is a very popular method of solution, especially for solving differential equations in the
recent years [1, 9, 15, 16, 19, 24, 25]. The main idea behind this method is to write the spectral solution as the sum of
truncated series using suitable basis functions. The set of basis functions we choose should be easy to compute and it
should converge rapidly and the solution should have high accuracy when taking truncation N to be large. One of the
main advantages of spectral methods is its fast rate of convergence, which is exponential for infinitely differentiable
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functions. The numerical scheme for generalized delay differential equation (2.1) with initial and boundary conditions
is described in detail in this section:

The approximate solution for the interval [0, l] is given by

WN (t) ≈ W (t) ≈
N∑

n=0

anϕn((2t− l)/l). (3.1)

Here, the number of collocation points are denoted by N and ϕn((2t− l)/l)) gives the set of shifted basis functions.
Let us denote ϕn((2t − l)/l)) by ϕn(t) hereafter. As mentioned earlier, we have considered three different special
functions such as Chebyshev polynomials Tn((2t− l)/l)), Legendre polynomials Ln((2t− (b− a))/(b+ a)) and Jacobi

polynomials P
(1,1)
n ((2t− l)/l)) as basis functions.

The residual function is obtained on substituting approximate solution (3.1) in (2.1). Thus, the residual function
is given by

Res(t) :=

m1∑
r=0

m∑
s=0

prs(t)(
N∑

n=0

anϕ
(s)
n (αrst+ βrs))+

m2∑
j=0

m∑
k=0

m∑
l=0

hjkl(t)(
N∑

n=0

anϕ
(k)
n (αjklt+ βjkl))(

N∑
n=0

anϕ
(l)
n (γjklt+ µjkl)) + f(t)− (

N∑
n=0

anϕ
(m)
n (t));

(3.2)

i.e.

Res(t) :=

m1∑
r=0

m∑
s=0

prs(t)W
(s)(αrst+βrs)+

m2∑
j=0

m−1∑
k=0

m−1∑
l=0

hjkl(t)W
(k)(αjklt+βjkl)W

(l)(γjklt+µjkl)+f(t)−W (m)(t).

(3.3)

The essence of the present scheme is to force the residual function to be zero at certain sets of collocation points.
These collocation points vary from one basis function to another. For the Chebyshev polynomials as basis functions,
the set of collocation points considered are ti =

1
2 (l− (l)cos(π ∗ i)/N), where l varies from 1 to N − 1. For Legendre

and Jacobi polynomials as basis functions, zeros of their first derivatives of the respective polynomials are chosen to be
the collocation points. For the choice of basis functions and collocation points, the residual function (3.3) is converted
as follows

Res(ti) :=

m1∑
r=0

m∑
s=0

prs(ti)W
(s)(αrsti + βrs) +

m2∑
j=0

m−1∑
k=0

m−1∑
l=0

hjkl(ti)W
(k)(αjklti + βjkl)W

(l)(γjklti + µjkl) (3.4)

+ f(ti)−W (m)(ti)

= 0,

where i varies from 0 to N . The simplified matrix form of (3.4) is given by:

R(t) :=

m1∑
r=0

m∑
s=0

PrsD
(m)(αrs, βrs)A+

m2∑
j=0

m∑
k=0

m∑
l=0

(HjklD
(k)(αjkl, βjkl)A)D(l)(γjkl, µjkl)A (3.5)

+ F −D(m)A

= [0],
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where

D(m) =


ϕ
(m)
0 (t0) ϕ

(m)
1 (t0) . . . ϕ

(m)
N (t0)

...
... . . .

...

ϕ
(m)
0 (tN ) ϕ

(m)
1 (tN ) . . . ϕ

(m)
N (tN )


N+1×N+1

, Prs =


prs(t0) 0 0 . . . 0

0 prs(t1) 0 . . . 0
...

...
... . . .

...
0 0 0 . . . prs(tN )


N+1×N+1

,

Hjkl =


hjkl(t0) 0 0 . . . 0

0 hjkl(t1) 0 . . . 0
...

...
... . . .

...
0 0 0 . . . hjkl(tN )


N+1×N+1

, F =


f(t0) 0 0 . . . 0
0 f(t1) 0 . . . 0
...

...
... . . .

...
0 0 0 . . . f(tN )


N+1×N+1

,

A =


a0

a1

...
aN


N+1×1

, R(t) =


Res(t0)
Res(t1)

...
Res(tN )


N+1×1

,

where D(m) is a differentiation matrix in which basis function are differentiated m times. Hjkl,Prs represents the
coefficient matrix. F represents the non homogeneous function matrix. [0] is the N + 1× 1 matrix with zero entries.

D(m)(αrs, βrs) =


ϕ
(m)
0 (αrst0 + βrs) ϕ

(m)
1 (αrst0 + βrs) . . . ϕ

(m)
N (αrst0 + βrs)

...
... . . .

...

ϕ
(m)
0 (αrstN + βrs) ϕ

(m)
1 (αrstN + βrs) . . . ϕ

(m)
N (αrstN + βrs)


N+1×N+1

,

D(k)(αjkl, βjkl) =


ϕ
(k)
0 (αjklt0 + βjkl) ϕ

(k)
1 (αjklt0 + βjkl) . . . ϕ

(k)
N (αjklt0 + βjkl)

...
... . . .

...

ϕ
(k)
0 (αjkltN + βjkl) ϕ

(k)
1 (αjkltN + βjkl) . . . ϕ

(k)
N (αjkltN + βjkl)


N+1×N+1

,

D(l)(γjkl, µjkl) =


ϕ
(l)
0 (γjklt0 + µjkl) ϕ

(l)
1 (γjklt0 + µjkl) . . . ϕ

(l)
N (γjklt0 + µjkl)

...
... . . .

...

ϕ
(l)
0 (γjkltN + µjkl) ϕ

(l)
1 (γjkltN + µjkl) . . . ϕ

(l)
N (γjkltN + µjkl)


N+1×N+1

,

where D(m)(αrs, βrs), D(k)(αjkl, βjkl), D(l)(γjkl, µjkl) are delayed differentiation matrix. Thus the more simplified
form of (3.5) is given by (3.6) as follows

R(t) :=

m1∑
r=0

m∑
s=0

PrsY
(m)(αrs, βrs) +

m2∑
j=0

m−1∑
k=0

m−1∑
l=0

HjklG
(k,l)
jkl + F−Y(m) = [0]. (3.6)

where

Y(m) = D(m)A, Y(m)(αrs, βrs) = D(m)(αrs, βrs)A, Y(k)(αjkl, βjkl) = D(k)(αjkl, βjkl)A, (3.7)

Y(l)(γjkl, µjkl) = D(l)(γjkl, µjkl)A, G(k,l) = H(k)(αjkl, βjkl)×Y(l)(γjkl, µjkl), (3.8)

where

H(k)(αjkl, βjkl) =


(Y(k)(αjkl, βjkl))1 0 . . . 0

0 (Y(k)(αjkl, βjkl))2 . . . 0
...

... . . .
...

0 0 . . . (Y(k)(αjkl, βjkl))N+1


N+1×N+1

where (Y(k)(αjkl, βjkl))i represents the ith vector of the matrix Y(k)(αjkl, βjkl).
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Thus, on substituting the spectral solution (3.1) in the left hand side of the initial conditions, we have

I0 :=

N∑
n=0

anϕn(t0); I1 :=

N∑
n=0

anϕ
(1)
n (t0); . . . ; Im−1 :=

N∑
n=0

anϕ
(m−1)
n (t0). (3.9)

These initial conditions are written in matrix form as follows: Int := DA and DA = V.
Thus, we have Int = V. where

D =

 ϕ0(t0) ϕ1(t0) . . . ϕN (t0)
...

... . . .
...

ϕ
(m−1)
0 (tN ) ϕ

(m−1)
1 (tN ) . . . ϕ

(m−1)
N (tN )


m×N+1

, Int =


I0
I1
...

Im−1


m×1

,V =


V0

V1

...
Vm−1


m×1

.

Since, we have m initial conditions. The last m rows of residual matrix (3.6) are replaced by the m initial conditions.
On total, now we have matrix of the form

Res(t0)
Res(t1)

...
Res(tn−m)

I0
...

Im−1


N+1×1

=



0
0
...
0
V0

...
Vm−1


N+1×1

.

Thus, we get N +1 algebraic equations with N +1 unknowns. The present method converts the higher order delayed
differential equation into algebraic equations which is solved using Newton’s method. The unknown coefficients an,
where i varies from 0 to N are obtained on solving these linear/nonlinear algebraic equations. On substituting these
unknown coefficients in equations (3.1), yields spectral solution for WN (t).

4. Numerical Applications

In this section, we have considered twelve different examples for which analytical solution already exists. The initial
conditions are extracted from the analytical solutions. Here, the solutions are calculated over the domain [0, 1]. All the
computations are done using Maple 18. The absolute and residual error play a vital role in determining the accuracy
of the method. The absolute error is given by

• Absolute Error EN(tj) := |WN(tj)−W (tj)|,
• Maximum Absolute Error MAEN := max0≤tj≤1 |EN(tj)|,
• L2 norm :=

∫ 1

0
WN(t)dt.

where WN(tj) represents the spectral solutions with ’N’ collocation points for a given tj and W (tj) is the exact
solution obtained from the literature for a given tj .

Example 4.1. Let us consider (2.1) with m = 1, m1 = 1, p00 = −1, α00 = 0.8, p10 = 1, α10 = 1 which is a linear
delay differential equation with constant coefficients and proportional delay given by [13, 28]:

w(1)(t) = −w(0.8t) + w(t), (4.1)

with the initial condition w(0) = 1.
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This model arise in the mathematical modeling of the wave motion in the supply line to an overhead current collector
(pantograph) of an electric locomotive. As an illustration, let us consider for N = 6 with Chebyshev polynomials as
basis function. The residual function for (4.1) is given by

R(t) := P00D(0.8t,0)A+P01DA−D(1)A. (4.2)

Using the set of collocation points t0 = 0, t1 = 0.066987, t2 = 0.25, t3 = 0.5, t4 = 0.75, t5 = 0.93301, t6 = 1, the first
order and second order derivative matrices are derived as follows:

D =



1 −1 1 −1 1 −1 1
1 −0.866026 0.500002 −0.000035773 −0.499996 0.866022 −1.
1 −0.5 −0.5 1. −0.5 −0.5 1.
1 0. −1. 0. 1. 0. −1.
1 0.5 −0.5 −1. −0.5 0.5 1.
1 0.86602 0.499981 −0.0000324224 −0.500037 −0.866052 −1.
1 1 1 1 1 1 1


,

D(1) =



0 2 −8 18 −32 50 −72
0 2 −6.92821 12. −13.8565 10.0001 −0.000171711
0 2 −4. 0. 8. −10. 0.
0 2 0. −6. 0. 10. 0.
0 2 4. 0. −8. −10. 0.
0 2 6.92816 11.9998 13.8558 9.99888 −0.00155625
0 2 8 18 32 50 72


7×7

,

P00 =



−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1


7×7

, P10 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


7×7

, A =



a0
a1
a2
a3
a4
a5
a6


7×1

,

D(0.8t,0) =



1. −1. 1. −1. 1. −1. 1.
1. −0.892821 0.594258 −0.168311 −0.293715 0.692781 −0.943343
1. −0.6 −0.28 0.936 −0.8432 0.07584 0.752192
1. −0.2 −0.92 0.568 0.6928 −0.84512 −0.354752
1. 0.2 −0.92 −0.568 0.6928 0.84512 −0.354752
1. 0.492816 −0.514265 −0.999692 −0.471063 0.535397 0.998767
1. 0.6 −0.28 −0.936 −0.8432 −0.07584 0.752192


7×7

,

R(t) =



Res(t0)
Res(t1)
Res(t2)
Res(t3)
Res(t4)
Res(t5)
Res(t6)


7×1

.

The last row of residual error matrix R(t) is replaced by the initial condition I0 given by

I0 := DA = 1, (4.3)
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Table 1. Comparison of spectral solution with SOB-Operational[13], MCCM[28], TLPM [14] and
OMCP[21] for Example 4.1.

t SOB-Operational [13] MCCM [28] TLPM [14] Present Method OMCP [21] Present Method
N = 6 N = 6 N = 6 N = 6 N = 15 N = 15

0.2 0.66469078 0.66469101 0.6646906619 0.664691281 0.66469100082 0.66469100083
0.4 0.43356098 0.43356077 0.4335614390 0.433560399 0.43356077877 0.43356077878
0.6 0.27648212 0.27648233 0.2764814803 0.276482249 0.27648233022 0 .27648233022
0.8 0.17148433 0.17148412 0.1714843782 0.171484942 0.17148411197 0.17148411198
1 0.10267077 0.10267013 0.1026700543 0.10267150 0.10267012657 0.10267012657

CPU Time 0.047 0.077

Table 2. Comparison of CPU Time used for Present method with SOB-Operational [13] and TM
[30] for Example 4.1.

Method CPU Time (seconds)
N = 5 N = 8

Present method 0.046 0.048
SOB-Operational[13] 0.8892 0.9516
Taylor Method [30] 0.2341 0.2896

where

D =
[
1. −1. 1. −1. 1. −1. 1.

]
.

Thus, on combining residual functions with initial conditions, we have 7 algebraic equations with 7 unknowns
variables. On solving these equations, we get the final spectral solution

WN(t) = 0.013892691820179721421t6 − 0.095800640954748569702t5 + 0.36780363537832919158t4

− 0.98317281543314782037t3 + 1.7999486291671151701t2 − 2.0t+ 0.99999999999999999997.

(4.4)

Table 1 compares the spectral solution with other numerical methods such as Modified Chebyshev Collocation
Method (MCCM)[28], numerical method using shifted orthonormal Bernstein polynomials (SOB-Operational)[13],
Transfered Legendere Pseduospectral method [TLPM] [14] and Operational Method using Chebyshev Polynomial
(OMCP)[21] for different values of N. The CPU time used for different values of N is compared with other methods
such as SOB-Operational [13] and Taylor Method (TM)[30] is tabulated in Table 2. The computational time in the
Tables 1 and 2 evidently highlights that the present method is computationally efficient. The absolute and residual
error plot for different vales of N is depicted in Figure 1. Figure 1(a) shows that as N increases from 4 to 8, the absolute
error decreases from O(10−2) to O(10−8). In Figure 1(b) , the residual error elevates from O(10−8) to O(10−18) as N
raises from 8 to 15. This reveals that as N increase, there is decrease in the error values. (i.e.) the error converges.

Example 4.2. Let us consider (2.1) with m = 1, m1 = 1, p00 = 0.5e0.5t , α00 = 0.5, p10 = 0.5, α10 = 1 which is a
linear delay equation with variable coefficient given by [21, 28]:

w(1)(t) = 0.5e0.5tw(0.5t) + 0.5w(t), (4.5)

with the initial condition w(0) = 1 and the exact solution w(t) = et.

Table 3 compares the absolute error obtained using present method with MCCM [28], OMCP [21] for N = 8 and
with Shifted Chebyshev Polynomial (SCP) [27] for N = 11. It can be noted from the table that at same number
of collocation points, the present method gives good accuracy compared to other methods in the literature. Table
4 represents the L2 norm error for different values of N with respect to all the three different basis function. As N
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increases, the convergence of the error can be seen in these tables. Figure 2(a) depicts the residual error for different
values of N and Figure 2(b) compares the absolute error obtained using present method with that of MCCM [28] and
Operational Matrix method using Genocchi polynomials (OGPM)[10] for N = 16 . It can be seen that for N = 16,
absolute error for MCCM, OGPM is of order 10−15 and 10−19 respectively. But for the same N, present method shows
absolute error of order 10−24. This shows the novelty of the present method.

(a) Absolute error plot. (b) Residual error plot.

Figure 1. Absolute and Residual error plot for different values of N for Example 4.1.

Table 3. Comparison of absolute error with MCCM [28], OMCP [21] and SCP [27] for Example 4.2.
t MCCM[28] OMCP [21] Present Method at N = 8 SCP [27] Present method

N = 8 N = 8 Chebyshev Legendre Jacobi N = 11 N = 11

0.2 7.53 ∗ 10−11 0.314 ∗ 10−7 7.35341 ∗ 10−12 1.17824 ∗ 10−11 7.88253 ∗ 10−13 1.80 ∗ 10−14 1.876 ∗ 10−16

0.4 1.20 ∗ 10−9 0.109 ∗ 10−6 8.83223 ∗ 10−12 2.04758 ∗ 10−13 2.07973 ∗ 10−11 2.09 ∗ 10−14 5.914 ∗ 10−16

0.6 1.39 ∗ 10−9 0.818 ∗ 10−7 9.09392 ∗ 10−12 1.35129 ∗ 10−11 3.22923 ∗ 10−11 2.42 ∗ 10−14 8.276 ∗ 10−16

0.8 1.39 ∗ 10−10 0.506 ∗ 10−7 5.301778 ∗ 10−11 6.42538 ∗ 10−11 3.54560 ∗ 10−11 2.93 ∗ 10−14 1.064 ∗ 10−15

1 7.99 ∗ 10−10 0.123 ∗ 10−6 1.587427 ∗ 10−10 3.89256 ∗ 10−10 9.91012 ∗ 10−10 3.20 ∗ 10−14 1.813 ∗ 10−15

Table 4. L2 norm error for different values of N for Example 4.2.
Present Method

N Chebyshev Legendre Jacobi
4 5.031 ∗ 10−3 4.843 ∗ 10−3 6.471 ∗ 10−3

8 6.159 ∗ 10−9 5.745 ∗ 10−9 1.03768 ∗ 10−8

12 1.3632 ∗ 10−15 1.2756 ∗ 10−15 2.753 ∗ 10−15

16 2.9130 ∗ 10−23 8.620 ∗ 10−23 2.1209 ∗ 10−22
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Table 5. Comparison of absolute error with FBPCM [3] for Example 4.3.

t FBPCM [3] Present Method at N = 9
N = 9 Chebyshev Legendre Jacobi

0.01 2.05 ∗ 10−11 1.81105 ∗ 10−12 1.13350 ∗ 10−12 2.10893 ∗ 10−12

0.04 9.83 ∗ 10−12 7.03202 ∗ 10−13 5.72494 ∗ 10−12 1.54834 ∗ 10−11

0.09 4.45 ∗ 10−11 1.13635 ∗ 10−11 1.13350 ∗ 10−12 1.34538 ∗ 10−11

0.16 1.41 ∗ 10−11 5.62434 ∗ 10−12 5.97957 ∗ 10−12 1.65052 ∗ 10−12

0.25 6.54 ∗ 10−11 3.12437 ∗ 10−11 1.00289 ∗ 10−11 2.29982 ∗ 10−11

0.36 1.19 ∗ 10−10 2.97628 ∗ 10−11 2.42276 ∗ 10−11 8.01747 ∗ 10−12

0.49 1.61 ∗ 10−10 1.08094 ∗ 10−11 1.59384 ∗ 10−11 9.12145 ∗ 10−12

0.64 3.37 ∗ 10−10 3.483548 ∗ 10−11 6.60569 ∗ 10−12 1.35250 ∗ 10−11

0.81 3.81 ∗ 10−10 2.39195 ∗ 10−11 1.78993 ∗ 10−11 4.36959 ∗ 10−11

CPU Time 0.789

(a) Residual error plot for different values of
N.

(b) Comparison of absolute error with MCCM
and OGPM.

Figure 2. Residual and absolute error plot for Example 4.2.

Example 4.3. Let us consider (2.1) with m = 1, m1 = 0, m2 = 0, p00 = 1 , α00 = 1 , h000 = t, α000 = γ000 = 0.5
which is a nonlinear delay equation with variable coefficient given by [3] :

w(1)(t) = w(t) + tw(0.5t)2 + f(t), (4.6)

with the initial condition w(0) = −1 and the exact solution 9tet−1 − 1. The f(t) is given by 1 + 9e( − 1 + t)− t(−1 +
4.5e( − 1 + 0.5t)t)2.

Table 5 compares the absolute error obtained using present method with First Boubaker Polynomials Collocation
Method (FBPCM) [3] for different collocation points ti . Figure 3(a) displays the comparative plot of absolute errors
for N = 8 and 9 obtained using present method with FBPCM . Figure 3(b) depicts the residual error plot for N
using present method. In the plots, we observe that for same number of collocation points, the present method shows
maximum absolute error of order 10−10, whereas FBPCM shows accuracy of 10−8. Thus, Obtaining good accuracy at
less computational time compared to the other methods enhances the richness of the present method.
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(a) Comparison of absolute error plot with
FBPCM.

(b) Residual error plot for different values of
N.

Figure 3. Absolute and Residual error plot for Example 4.3.

Table 6. Absolute error for Example 4.4.

t Present Method at N = 8
Chebyshev Legendre Jacobi

0.2 1.1392304 ∗ 10−8 1.5055636 ∗ 10−9 8.3082386 ∗ 10−10

0.4 5.8505494 ∗ 10−8 7.4097943 ∗ 10−9 3.8623418 ∗ 10−9

0.6 7.5131327 ∗ 10−8 9.6763074 ∗ 10−9 5.0340879 ∗ 10−9

0.8 5.45657523 ∗ 10−8 6.9519739 ∗ 10−9 3.572930 ∗ 10−9

Example 4.4. Let us consider (2.1) with m = 2, m1 = 1, p00 = 1
t−1 , p01 = 1

t , p11 = 1
t2 , α00 = 1, α01 = 0.5,

α11 = 0.25 which is a second order linear singularly delay equation with variable coefficient is given by:

w(2)(t) =
1

t
w(1)(

t

2
) +

1

t2
w(1)(

t

4
) +

1

t− 1
w(t)− f(t), (4.7)

with the initial conditions w(0) = 1, w(1)(0) = 1. The exact solution of the problem is given by et . The f(t) is obtained
on substituting the exact solution in the given problem.

Table 6 displays the absolute error for N = 8 for three different basis functions. Figure 4 depicts the residual
and absolute error plot for different value of N . Figure 4(a) shows that the error is of order 10−2 for N = 4, which
later declines to O(10−21) when N raises to 10. Similarly in Figure 4(b), the change in residual error from O(10−6)
to O(10−21) as N increases from 5 to 15 is noted. This change shows the occurrence of convergence of error as N
increases.

Example 4.5. Let us consider (2.1) with m = 2, m2 = 0 , h000 = −2, f(t) = 1, α000 = γ000 = 0.5 which is a second
order nonlinear delay equation given by [22]:

w(2)(t) = 1− 2w2(
t

2
), (4.8)

with initial conditions w(0) = 1 and w(1)(0) = 0. The exact solution is given by w(t) = cos(t).
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(a) Residual error plot. (b) Absolute error plot.

Figure 4. Absolute and residual error plot for Example 4.4.

Table 7. Comparison of absolute error with OMBWM [23] and JSA for Example 4.5.

t OMBWM [23] Present Method at N = 8 JSA [29] Present method
k = 2,M = 7 Chebyshev Legendre Jacobi N = 10 N = 10

0.2 1.05 ∗ 10−10 3.490365 ∗ 10−12 2.44564 ∗ 10−12 2.10893 ∗ 10−12 6.62 ∗ 10−13 6.2868 ∗ 10−16

0.4 3.21 ∗ 10−11 8.93559 ∗ 10−12 7.03235 ∗ 10−12 1.54834 ∗ 10−11 6.93 ∗ 10−12 6.9251 ∗ 10−15

0.6 3.81 ∗ 10−11 1.13635 ∗ 10−11 1.45763 ∗ 10−11 1.34538 ∗ 10−11 2.89 ∗ 10−12 9.8200 ∗ 10−15

0.8 1.31 ∗ 10−6 5.62434 ∗ 10−12 1.06428 ∗ 10−11 1.65052 ∗ 10−12 3.95 ∗ 10−11 1.9722 ∗ 10−14

1 1.82 ∗ 10−6 3.12437 ∗ 10−11 1.97986 ∗ 10−9 2.29982 ∗ 10−11 - 1.0758 ∗ 10−12

Table 7 represents the comparison of absolute error for K = 2, M = 7 with Operational matrix based on Bernoulli
Wavelets Method (OMBWM) [23] and N = 10 with Jacobi Spectral Approximation Method (JSA) [29]. Both the
comparison shows that the present method with considered basis functions shows good accuracy compared to Bernoulli
basis functions.

Example 4.6. Let us consider (2.1) with m = 3, m2 = 0, h000 = 2, f(t) = −1, α000 = γ000 = 0.5 which is a third
order nonlinear pantograph equation with constant coefficient given by [10]:

w(3)(t) = 2w2(
t

2
)− 1 (4.9)

with initial conditions w(0) = 0, w(1)(0) = 1 , w(2)(0) = −1. The exact solution is given by w(t) = sin(t).

Table 8 compares the absolute error obtained using present method with Fractional-Order Hybrid Bessel Functions
(FHBFs) [4] for N = 8 and OGPM [10] for N = 15 . For same number of collocation points, the present method
shows maximum absolute error of order 10−20 whereas OGPM shows of order 10−16. This table reveals that present
method shows good resolution of results compared to [10].

Example 4.7. Let us consider (2.1) with m = 3, m1 = 0, p00 = −1, α00 = 0.5, p01 = −1,α01 = 1, p02 = t, α02 = 2,
f(t) = tcos(2t) + cos(0.5t) which is a third order linear delay equation with variable coefficient given by [2, 11]:

w(3)(t) = tw(2)(2t)− w(1)(t)− w(0.5t) + tcos(2t) + cos(0.5t) (4.10)
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Table 8. Comparison of absolute error with FHBF [4] and OGPM [10] for Example 4.6.

t FHBF [4] Present Method OGPM [10] Present Method at N = 15
N = 8 N = 8 N = 15 Chebyshev Legendre Jacobi

0.2 7.97 ∗ 10−8 5.171 ∗ 10−12 3.22 ∗ 10−18 1.22142 ∗ 10−24 1.68347 ∗ 10−25 9.07571 ∗ 10−24

0.4 4.90 ∗ 10−8 1.707 ∗ 10−11 7.19 ∗ 10−18 7.68206 ∗ 10−24 3.62382 ∗ 10−24 3.34660 ∗ 10−23

0.6 1.52 ∗ 10−7 2.881 ∗ 10−11 1.42 ∗ 10−16 1.90367 ∗ 10−23 1.27697 ∗ 10−23 6.98930 ∗ 10−23

0.8 5.09 ∗ 10−7 3.087 ∗ 10−10 3.78 ∗ 10−17 1.11994 ∗ 10−22 9.48676 ∗ 10−23 8.44557 ∗ 10−23

1 9.78 ∗ 10−7 3.376 ∗ 10−8 7.97 ∗ 10−8 5.99791 ∗ 10−20 8.25844 ∗ 10−20 1.34563 ∗ 10−19

Table 9. Comparison of spectral solution with OECM [2], Berstein series [11] and Exact for Example 4.7.

t OECM [2] Berstein series [11] Present Method Exact
N = 5 N = 6 N = 5

0.2 0.979528737 .9800663232 0.9800666 0.9800666
0.4 0.9180374858 0.9210523648 0.9210611 0.9210610
0.6 0.8183205412 0.8252705728 0.8253474 0.8253356
0.8 0.6871599035 0.6964380672 0.6968226 0.6967067
1 0.5381733576 0.5395000000 0.5408811 0.5403023

Table 10. Absolute error at N = 8 for Example 4.8.

t Present Method
Chebyshev Legendre Jacobi

0.2 1.4313681 ∗ 10−12 4.1173206 ∗ 10−13 3.19232111 ∗ 10−12

0.4 5.4352760 ∗ 10−12 4.2430693 ∗ 10−12 1.46283282 ∗ 10−11

0.6 2.8166072 ∗ 10−11 1.6375125 ∗ 10−11 2.48430479 ∗ 10−11

0.8 1.0789954 ∗ 10−10 6.8488563 ∗ 10−11 5.5572141 ∗ 10−11

1 1.2434409 ∗ 10−8 1.31981840 ∗ 10−8 1.4059401 ∗ 10−8

The initial conditions are given by w(0) = 1, w(1)(0) = 0,w(2)(0) = −1. The exact solution is given by w(t) = cos(t).

Comparison of spectral solution with Exact, Berstein series [11] and Orthogonal Exponential Collocation Method
(OECM) [2] for Example 4.7 is tabulated in Table 9. It can be noted from table that the present method captures
accuracy upto 3 digits for N = 5 whereas OECM captures only upto a digit and Berstein method fails to capture
accuracy upto 3 digits even for N = 6. Thus, the fruitfulness of the present method is enhanced in this table.

Example 4.8. Let us consider (2.1) with m = 3, m1 = 0, m2 = 0, p02 = 1, α02 = 1, h012 = 1, h013 = −1,α012 = 0.1,
α013 = 1

8 , γ012 = 0.1, γ013 = 0.1 which is a third order nonlinear pantograph equation with constant coefficient given
by:

w(3)(t) = w(2)(t) + w(2)(0.1t)w(1)(0.1t)− w(3)(0.1t)w(1)(
t

8
)− f(t), (4.11)

with initial conditions w(0) = 1, w(1)(0) = 0, w(2)(0) = −1. The exact solution is given by w(t) = cos(t). The f(t)
can be calculated on substituting the exact solution into the equation.

Table 10 tabulates the absolute error obtained using present method for N = 8. The table shows that absolute
error obtained by present method shows accuracy of order O(10−9). This equation is not attempted in the literature
yet.
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Table 11. Comparison of absolute error for Example 9 with SOB-Operational [13], FHBF [4] and
BW [12].

t SOB- [13] FHBF [4] Present Method at N = 8 BW [12] Present method
N = 8 N = 8 Chebyshev Legendre Jacobi N = 14 N = 14

0.2 6.78 ∗ 10−11 3.05 ∗ 10−7 6.89261 ∗ 10−12 4.248984 ∗ 10−12 5.052381 ∗ 10−12 2.332 ∗ 10−15 1.05163 ∗ 10−19

0.4 3.31 ∗ 10−10 9.81 ∗ 10−7 1.74226 ∗ 10−13 5.298887 ∗ 10−12 1.748448 ∗ 10−11 1.055 ∗ 10−14 4.8761 ∗ 10−19

0.6 8.43 ∗ 10−10 1.85 ∗ 10−6 1.00156 ∗ 10−10 7.78217 ∗ 10−11 7.1783491 ∗ 10−12 2.465 ∗ 10−14 1.1491 ∗ 10−18

0.8 1.54 ∗ 10−9 2.64 ∗ 10−6 1.75342 ∗ 10−10 7.300290 ∗ 10−11 1.589979 ∗ 10−11 4.452 ∗ 10−14 2.0784 ∗ 10−18

1 2.49 ∗ 10−9 3.03 ∗ 10−6 2.54386 ∗ 10−8 2.66333 ∗ 10−8 2.771830 ∗ 10−8 6.950 ∗ 10−14 8.5416 ∗ 10−18

CPU Time 1.1388 0.016

Table 12. Comparison of absolute error for Example 4.10 with JRGCM [5].

t JRGCM [5] at N = 12 BW [12] Present Method at N = 12
α = β = 3

2 α = β = 1
2 N = 12 Chebyshev Legendre Jacobi

0.1 1.259 ∗ 10−6 1.389 ∗ 10−6 3.389 ∗ 10−10 8.44875 ∗ 10−13 2.20335 ∗ 10−12 6.35201 ∗ 10−12

0.3 3.703 ∗ 10−5 3.999 ∗ 10−5 7.094 ∗ 10−9 2.18008 ∗ 10−11 6.15971 ∗ 10−11 2.01928 ∗ 10−10

0.5 1.760 ∗ 10−4 1.811 ∗ 10−4 3.468 ∗ 10−8 2.70294 ∗ 10−10 4.49383 ∗ 10−10 1.12922 ∗ 10−9

0.7 5.247 ∗ 10−4 5.510 ∗ 10−4 8.196 ∗ 10−8 1.77315 ∗ 10−8 1.64922 ∗ 10−8 1.58143 ∗ 10−8

0.9 1.693 ∗ 10−3 1.718 ∗ 10−3 3.794 ∗ 10−6 3.80630 ∗ 10−7 3.42334 ∗ 10−7 2.86995 ∗ 10−7

Example 4.9. Let us consider (2.1) with m = 3, m1 = 1, p00 = −1, α00 = 1, p10 = −1, α10 = 1, β10 = −0.3,
f(t) = e−t+0.3 which is a third order pantograph equation with time varying delay equation given by [13]:

w(3)(t) = −w(t)− w(t− 0.3) + e−t+0.3, (4.12)

with initial conditions w(0) = 1, w(1)(0) = −1, w(2)(0) = 1. The exact solution is given by w(t) = e−t.

Table 11 compares the absolute error with Shifted Orthogonal Berstein Operational method (SOB-Operational)[13],
FHBFs [4] and Bernoulli Wavelets (BW) [12] for different values of N. The table shows that the present method shows
better accuracy compared to other methods with less computational time.

Example 4.10. Let us consider (2.1) with m = 4, m1 = 0, p00 = −1, α00 = 0.5, p01 = −1, α01 = 1, p02 = −t,
α02 = 2, p03 = 1, α03 = 0.25 which is a fourth order pantograph differential equation with variable coefficient [5]:

w(4)(t) = w(3)(0.25t)− tw(2)(2t)− w(1)(t)− w(0.5t)− f(t), (4.13)

with the initial conditions w(0) = 0, w(1)(0) = 2, w(2)(0) = −4, w(3)(0) = −2. The exact solution is given by
w(t) = e−tsin(2t). The f(t)is given by substituting the exact solution in (4.13).

Table 12 compares the absolute error obtained using present method with those of Jacobi Rational- Gauss Collo-
cation Method (JRGCM) [5] and Bernoulli Wavelets (BW) [12] for N = 12. This table reveals that MAE obtained by
present method shows two times better accuracy for same number of collocation points compared to JRGCM. (i.e.)
For N = 12, present method shows MAE of O(10−7), whereas JRGCM shows MAE of O(10−3) only. The table also
shows that the considered special functions works well compared to Bernoulli functions.

Example 4.11. Let us consider (2.1) with m = 5, m1 = 0, p00 = 1, α00 = 0.5, p01 = 1, α01 = 2,p02 = −3, α02 = 0.25,
p03 = 2t, α03 = 1

3 , p04 = −1, α04 = 1 which is a fifth order pantograph differential equations with variable coefficients
given by [5]:

w(5)(t) + w(4)(t) = 2tw(3)(
t

3
)− 3w(2)(0.25t) + w(1)(2t) + w(0.5t)− f(t), (4.14)
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Table 13. Comparison of absolute error for Example 4.11 with JRGCM [5].

t JRGCM [5] at N = 18 Present Method at N = 10
α = β = 1 α = β = 0.5 α = β = 0.5 Chebyshev Legendre Jacobi

0.1 4.149 ∗ 10−6 3.676 ∗ 10−6 1.221 ∗ 10−5 6.71228 ∗ 10−8 1.06874 ∗ 10−8 2.51323 ∗ 10−8

0.3 5.872 ∗ 10−4 1.186 ∗ 10−4 9.244 ∗ 10−4 9.70219 ∗ 10−7 8.51033 ∗ 10−7 2.54472 ∗ 10−6

0.5 4.465 ∗ 10−3 1.021 ∗ 10−3 7.084 ∗ 10−3 4.544170 ∗ 10−5 6.37292 ∗ 10−5 1.97627 ∗ 10−5

0.7 1.606 ∗ 10−2 3.257 ∗ 10−3 2.515 ∗ 10−2 1.422850 ∗ 10−5 2.37034 ∗ 10−5 7.46599 ∗ 10−5

0.9 4.397 ∗ 10−2 1.023 ∗ 10−2 6.712 ∗ 10−2 1.45385 ∗ 10−4 7.23294 ∗ 10−5 2.09096 ∗ 10−4

Table 14. Comparison of absolute error for Example 4.12 with BCM [11].

t Berstein Series [11] Present Method at N = 8
N = 8 Chebyshev Legendre Jacobi

0.2 4.549 ∗ 10−6 2.03446 ∗ 10−11 4.19300 ∗ 10−11 9.43293 ∗ 10−11

0.4 1.352 ∗ 10−5 2.51095 ∗ 10−10 6.50428 ∗ 10−10 1.72196 ∗ 10−9

0.6 6.844 ∗ 10−4 1.33049 ∗ 10−9 3.36646 ∗ 10−9 9.14699 ∗ 10−9

0.8 3.517 ∗ 10−3 4.94116 ∗ 10−9 1.16149 ∗ 10−8 3.07055 ∗ 10−8

1 1.022 ∗ 10−2 7.10138 ∗ 10−8 8.39185 ∗ 10−8 1.25749 ∗ 10−7

with the initial conditions w(0) = 1, w(1)(0) = −1
2 , w(2)(0) = −63

4 , w(3)(0) = 191
8 , w(4)(0) = 3713

16 . The exact

solution is given by w(t) = e−2tcos(4t) . The solution f(t)is obtained by substituting exact solution in (4.14).

Table 13 compares the absolute error obtained using present method for N = 10 with those of JRGCM[5] for
N = 18 (for different values of α and β). This table shows that MAE for present method is of O(10−4) , whereas for
JRGCM, MAE goes upto O(10−2) . Though [5] is studied using Jacobi polynomials, due to the efficiency of present
method, a high accuracy of results are obtained compared to [5].

Example 4.12. Let us consider (2.1) with m = 5, m1 = 0, p00 = −1, α00 = 1, β00 = −0.3, p01 = 1, α01 = 1,
p02 = −t, α02 = 1, p04 = t, α04 = 1, f(t) = e(−t+0.3) which is a variable fifth order time varying delay pantograph
differential equation given by [11]:

w(5)(t) = tw(4)(t)− tw(2)(t) + w(1)(t)− w(t− 0.3) + f(t), (4.15)

with initial conditions w(0) = 1, w(1)(0) = −1, w(2)(0) = 1, w(3)(0) = −1, w(4)(0) = 1. The exact solution is given by
w(t) = e−t.

Table 14 compares the absolute error obtained using present method with Berstein Collocation Method (BCM)
[11]for N = 8. It can be heeded from the table, the present method obtain MAE of O(10−7), whereas BCM shows
MAE of O(10−2) for same number of collocation points. The significance of the present method of acquiring better
accuracy compared to the other method is captured in this table.

5. Conclusion

This paper proposes the spectral solution for the framed generalized form of higher order linear/nonlinear delay
differential equations. Spectral solutions are presented for twelve different existing examples of higher order lin-
ear/nonlinear delay differential equations. The absolute and residual errors obtained for these examples using the
present method are compared with the available literature works. The following conclusions are drawn from the
present analysis.

(i) It may be noted from the error tables and figures that the present method prevails over many other studies
in the literature in yielding high accuracy at the same number of collocation points. Hence this study gains
more importance.
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(ii) The significance of this method lies in showing the robustness and computational effectiveness of the present
method. (i.e) the CPU time used by the present method is less compared to other methods which are shown
in tables.

(iii) In all the examples, there occurs a decline in the absolute and residual error with raise in N . (i.e) The error
converges.

(iv) Though, there are wide collections of collocation methods available in the literature, the comparative tables and
figures picturise that the present method shows much better results than the previously available collocation
methods.

(v) All these tables and figures evidently reveal that the present method is more suitable to solve higher order
linear/ nonlinear delay differential equations and yields high accuracy at the low number of collocation points
and computational time.
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