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Abstract

The present paper develops the solution of steady axi-symmetric Navier-Stokes conservation equations incorpo-

rating Reiner Rivlin stress and strain rate relation that represents generalized non-Newtonian fluid. Perturbation
solution is obtained to determine the flow field for axially symmetric stenosed artery. The flow field obtained

from the Perturbation solution is compared with the exact analytical solution. In perturbation solution, cross

viscosity that represents non-Newtonian characteristics is considered a perturbation parameter, and the result
obtained is observed to be dependent on the perturbation parameter. At smaller values of cross viscosity, the

perturbation result is significantly closer to the analytical solution. But, as the values of cross viscosity increase,

the perturbation results show a wider deviation from analytical results. Further, in this paper, the results of
Reiner Rivlin are compared with the results obtained from the Power Law stress and strain rate relation. Such

comparison of results of Reiner Rivlin with Power law is utilized to study the flow characteristics of blood. The

flow profile in the case of Reiner Rivlin is observed to be significantly closer to that of Power law. The study
infers that Reiner Rivlin’s constitutive relation is fairly suitable in simulating blood flow in arterial stenosis.
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1. Introduction

Arterial stenosis is due to the gradual constriction of an artery by the accumulation of cholesterol, calcium and
other fatty substances [25]. The arterial blood flow is subjected to increased resistance leading to hypertension and
triggers significant deviation in characteristics of blood flow such as velocity profile, axial pressure distribution, shear
stress at the wall, and resistance impedance. One of the established approaches is to correlate the altered blood
flow characteristics with the degree of obstruction in stenosis. But concurrently, the flow characteristics are greatly
influenced by blood rheology, which is highly complex. A set of factors such as viscosity of plasma, rate of shear, degree
of aggregation of red blood cells, and deformability of bi-concave erythrocytes, percentage of haematocrit is reported
to significantly affect shear stress and viscosity of blood [6, 20, 26]. Blood viscosity depends on arterial diameter. Such
dependency called Fahraeus and Lindquist effect is further significant in stenosis as it constricts the artery reducing
its size. Blood by composition is a heterogeneous suspension of deformable cells in watery plasma. The rheological
behavior is governed by the compositions of blood and their mutual interactions and interactions with the surrounding
structures. While the flow of plasma exhibits Newtonian characteristics, whole blood is non-Newtonian in nature as
RBC occupies around 40-46 percent of volume in the blood and contributes to the increase in viscosity.

Viscosity is the most dominant factor that influences blood flow characteristics. In the large diameter of the blood
vessels, at high shear rate blood may maintain constant viscosity but as it becomes smaller, the influence of cells,
RBC in particular, becomes predominant to induce a low shear rate. As per a report, viscosity and viscoelasticity
are increased due to the hardening of the erythrocytes [21]. Change in viscoelasticity behavior is influenced at higher
shear rates causing dilatancy.
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From the literature [22], it is well established that to account for non-constant viscosity of blood, various constitutive
relations where viscosity is considered to be either dependent on shear rate or stress are developed. Power Law
is found to be the most widely considered as it fits well with the experimental data. These models satisfactorily
consider shear-thinning viscosity, and yield stress, but are not suitable for the dilatancy effect. In order to predict
dilatancy in wet sand, Massoudi [11] has developed a different type model using generalized Reiner Rivlin constitutive
relation. In such a case, shear viscosity depends on both shear rate and volume fraction in suspension. Considering
the fact that blood shows both shear thinning and thickening properties as shear increases due to Fahraeus and
Lindquist effect and dilatancy effect due to suspension nature, the use of Reiner-Rivlin constitutive relation seems
to be appropriate in modeling blood flow in the stenosed artery. Therefore, in the present paper, conservation
equations are formulated considering Reiner-Rivlin constitutive relation. The expression for flow field is obtained for
axi-symmetric case considering axially symmetric stenosis. The differential type Reiner Rivlin constitutive relations
render the conservation equations non-linear. Considering non linearity of governing equations, an attempt has been
made to develop a solution for the flow field by applying the Perturbation method. The results obtained in terms of
the flow field are compared with the analytical method.

To account for variable viscosity, shear rate dependent viscous inelastic constitutive models are reported in the
literature. Literature is rich where in the Power-law [17, 18], H-B [1, 14, 24], the Casson [5, 10, 19, 23] and the
Carreau fluids [2, 4, 15] are considered. Power-law considers variable viscosity dependent on strain rate and analytical
results are available in describing the arterial blood flow situation. Viscosity and shear rate in Power law exhibits a
linear relationship on a logarithmic scale. Similarly, the attempt of researchers in measuring the viscosity of blood
by using either a falling-ball viscometer or a cone-plate viscometer for a range of shear rate from 0.1 to 400 s−1

is responding yield straight line [8]. Therefore, it can be inferred that the power-law model to acceptable precision
provides the best fit with the experimental data [8, 23]. Apart from strain rate dependent viscosity, the non-Newtonian
character of blood is due to yield stress [9]. Casson fluid constitutive relation is used as visco-inelastic non-Newtonian
fluid with yield stress. This fact has motivated the present study to compare the results obtained from Reiner Rivlin
with the results obtained from Power-law and Casson constitutive relations. Such comparison is intended to establish
the non-Newtonian character of Reiner Rivlin relative to shear rate dependent non-Newtonian fluid without or with
yield stress.

Therefore, the conservation equations are solved using both Power-law and Casson constitutive relations using the
same conditions in which Reiner Rivlin is solved. Such an approach is expected to establish the efficacy of Reiner
Rivlin’s constitutive relation in modeling the flow of blood in the stenosed arteries.

2. Formulation of Problem:

The present paper attempts to solve Navier-Stokes equations for momenta and mass for axis-symmetric case con-
sidering constitutive relations for both Reiner Rivlin fluid, and Power Law. The solution is obtained by considering
following conditions.

(1) Cylindrical co-ordinate (r, z) is considered with r= 0 is the axis of symmetry of artery,
(2) Incompressible flow of blood in artery is considered.
(3) Steady flow of blood is considered.
(4) Viscosity is considered to be constant.
(5) Density of blood is assumed to be constant.

Considering above conditions, the conservation equations of mass and momentum in dimensional form are:
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The schematic diagram of stenotic artery with co-ordinate system is shown in Figure 7.
Let the following non-dimensional variables are introduced.

r = rd0; z = bz;w = u0w;u =

(
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b

)
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(
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2

)
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Further, let the following conditions are considered for mild stenosis [3, 12].

δ
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�1;

Reδn( 1
n−1 )

b
�1;

d0n
( 1

n−1 )

b
∼ 0.

The equations governing steady flow of incompressible fluid in cylindrical coordinate in non-dimensional form reduce
to:

∂u

∂r
+
u

r
+
∂w

∂z
= 0, (2.4)

∂p

∂r
= 0, (2.5)
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∂
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(rτrz) . (2.6)

The geometry of stenosis in non-dimensional form is mathematically described as [3, 12]

hz =

{
dz [1− ω {(z − s)− (z − s)n}] , s ≤ z ≤ 1 + s

dz, otherwise, dz = 1 + ϕz
(2.7)

Where ω = δ(n)
n

n−1

(n−1)d0bn
, s = a

b , n is shape factor and ϕ = tan θ̃.

For non-tapered artery, θ̃ = 0, divergent artery, θ̃ ≥ 0 and convergent artery, θ̃ ≤ 0.
The wall shear stress is evaluated from Equation (2.6). Integrating Equation (2.6) with respect to r , the wall shear
stress τw is evaluated from τrz at r = hz.
The wall shear stress becomes:

τw=
1

2

∂p

∂z
hz. (2.8)

2.1. Constitutive equations for Reiner Rivlin fluid: Considering isotropic fluid, according to Reiner and Rivlin,
the general relation between stress tensor τij and rate of deformation εij is given as [3, 8, 13]

τij = −pδ̂ij + µijεij + µcεij ,

where, strain rate tensor εij = εikεkj , Kronecker delta
(
δ̂ij

)
. The value of δ̂ij = 0 when i = j and δ̂ij = 1 when i 6= j.

i may be either r or z or θ and j may also be either r or z or θ. Further, µ and µc are viscosity with dimension[
ML−1T−1

]
and cross viscosity with dimension

[
ML−1

]
respectively. µc is considered as a second order parameter

of non-Newtonian fluid.
The stress tensors in cylindrical coordinates (r, z) in dimensional form is [3, 8, 13]:
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Using non-dimensional variables introduced in section 2.1 in Equation (2.9), the expression for τrz is obtained. The
same is substituted in Equation (2.6). Further, using mild stenosis conditions, Equation (2.6) reduces to:
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Therefore, after converting Equations (2.4), (2.5), and (2.6) to non-dimensional form and using mild stenosis
conditions, the conservation equations in non-dimensional form non-dimensional form reduces to:

∂u
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= 0, (2.10)
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The initial and boundary conditions considered in the present study are:
∂w
∂r = 0 at r= 0; w= 0 at r=hz and u=finite and constant

2.2. Constitutive equations for Power Law fluid and Casson Fluid: The stress tensor for viscous fluid is given
as: τij= −µ (εij) εij , where µ (εij) is viscosity and εij= −∂w∂r .

The constitutive equation for Power-law is expressed as [23, 24]:

µ (εij) =mεij
n−1,

where n is dimensionless flow index and consistency index m.
When n < 1 , the fluid behaves as shear-thinning like blood, where in, viscosity decreases with the increase in

shear rate. Similarly, when n > 1 , fluid shows shear-thickening characteristics where in viscosity increases as shear
rate increases. At n = 1 and m remains constant, the fluid behaves as Newtonian fluid. Therefore, the comparative
study of flow field obtained from Reiner Rivlin Model and Power Law model for different n is expected to establish
appropriateness of Reiner Rivlin model to mathematically represent the variable blood rheology at different metabolic
and physical conditions highlighted in review of literatures.

Similarly, the constitutive equation for Casson fluid is expressed as [23, 24]:

(τrz)
1
2 =

(
µ∂w∂r

) 1
2 + (τ0)

1
2 , τrz ≥ τ0 and ∂w

∂r = 0 , τrz < τ0

3. Solution of Reiner Rivlin Model:

The conservation equation in non-dimensional form given in Equation (2.12) is a nonlinear partial differential
equation. In the present paper, the solution is obtained by employing perturbation method. The result obtained from
semi-analytical perturbation method is compared with exact solution reported by author in earlier paper.

To get the Perturbation solution, let Axial velocity (w), Pressure (p) and Flow rate (Q) are expanded considering
β as the Perturbation parameter. The expanded expressions are:

w = w0 + βw1 + β2w2 + . . . ,

p = p0 + βp1 + β2p2 + . . . ,

Q = Q0 + βQ1 + β2Q2 + . . . .

Using above expansions in Equation (2.12), it becomes:
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Ignoring higher order of β, above equation becomes:
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The zeroth order system becomes:

r
1

2

(
∂p0

∂z

)
=

(
∂w0

∂r

)
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Integrating above equation with respect to r and using boundary condition, it becomes:
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The first order system becomes:
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Substituting w0 and ∂w0

∂z , first order system Eq. (3.4) becomes:
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Integrating above equation with respect to r and using boundary condition: at r = hz, w1 = 0 it becomes:
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Using w0 given in Eq. (3.1) and its derivative and w1 in Eq. (3.5) and its derivative, the expression of w becomes:
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The volume flow rate being initial condition is utilized to obtain axial pressure gradient (∂p∂z ) from [1, 14, 17, 24]:

Q = 2π
∫ hz

0
rwdr.

From volume flow rate, pressure gradient (∂p∂z ) is determined as:
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The axial velocity (w) is evaluated by using Equation (3.7) in Equation (3.6). Wall shear stress (τw) is to be evaluated
by using Equation (3.7) and equation (2.7) in Equation (2.8).

An exact solution for velocity is obtained from Equation (2.12) considering the boundary and initial condition
as:∂w∂r = 0 at r = 0; w = 0 at r = hz and u = finite and constant and is reported in our earlier paper [26]. The final
expressions are reproduced below.
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Axial velocity is expressed as:
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Q

[(
hz

2−r2
2

)
+ 2βu (hz − r)− 2β2u2ln

(
r−2βu
hz−2βu

)2
]

π

[
4 (βu)

4
ln
(

2βu
hz−2βu

)2

− 4β3u3hz − β2u2hz
2 − βuhz

3

3 − hz
4

8

] . (3.9)

The wall shear stress can be expressed as:
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Variation of axial velocity ( w) with respect to radial distance ( r) is computed using Equation (3.8) in Equation (3.9).
For exact solution, Equation (3.10) is used to compute wall shear stress.

4. Solution of Power Law and Casson Models:

The z momentum equation in Equation (2.6) is integrated with respect to r and it becomes:

τrz=
∆p
2l r+ k

r , where k is constant of integration and k = 0 at r = 0, stress being finite. Further, equating with shear
stress at wall it becomes:
τrz=

∆p
2l r = τw

r
hz

, where, τw is shear stress evaluated at wall.
Using Power Law constitutive relation, the velocity is obtained as:

w =
(τw
m

) 1
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)
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) . (4.1)

Substituting Equation (4.1) in expression of volumetric flow rate: Q = 2π
∫ hz

0
rwdr, the expression of velocity becomes:
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For Casson fluid [23]
Axial Velocity:
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The expression of axial velocity is obtained in Equation (3.6) for Reiner Rivlin fluid by Perturbation method. The
results of same is compared with the results obtained from exact solution of Reiner Rivlin in Equation (3.9) and
Equations (4.2) and Equation (4.3) for Casson constitutive relation.

5. Numerical results and discussion:

Computer codes are written in MATLAB to compute axial velocity ( w) and wall shear stress (τw) substituting
values of ratio of cross viscosity to viscosity (β), flow rate ( Q) and stenotic wall radius (hz). Stenotic wall radius (hz)
is computed using values of shape parameter (n), taper angle of artery (θ) and height of stenosis (δ).
A semi-analytical Perturbation solution for flow field for Reiner Rivlin is developed. Perturbation method employs
ratio of cross viscosity to viscosity (β) as the perturbation parameter. Expression for axial velocity is obtained after
considering up to first order of expansion, ignoring higher order terms. Axial velocity profiles with respect to radial
distance obtained from Perturbation solution and exact solution are plotted in Figure 7. It is observed that the
perturbation solution computes lower axial velocity with respect to r in the plug region. But as the radial distance
increases, the both the solutions get closer. The root mean squared difference is also computed and the value is
0.0051. The axial velocity profile of Perturbation solution is relatively flatter near the centre compared to the profile
obtained from exact solution. The squared difference between the axial velocity computed from exact solution and
Perturbation solutions at different radial distance has been computed and is plotted in Figure 3. It is observed that
the squared difference decreases sharply as r increases beyond some value. In Reiner Rivlin, ratio of cross viscosity to
viscosity (β) term incorporates non-Newtonian character to the blood. As (β) increases the non-Newtonian character
becomes relatively more significant. Considering (β= 0), Newtonian flow field is recovered in both exact solution and
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Perturbation solutions. For different (β), the axial velocity profiles for Reiner Rivlin are plotted for exact solution and
Perturbation solutions in Figure 4 and Figure 5 respectively. From the literature, it is suggested that in Newtonian
fluid, the axial velocity profile exhibits parabolic trend. At (β= 0), values for Newtonian fluid is obtained where the
axial velocity profile is parabolic. As (β) increases, the trend line deviates from the parabolic pattern. Higher (β),
higher is the axial velocity at the centre but shows a sharp fall with the increase in the values of r. Figure 6 shows
the variation of mean squared difference of axial velocity obtained from exact solution and Perturbation solution with
respect to (β). It is observed that as the value of (β) increases the mean squared difference of axial velocity between
exact solution and Perturbation solution increases. This is due to the fact that (β) is Perturbation parameter and
therefore, it has significant effect on the computed values of axial velocity. The expressions of axial velocity have been
deduced considering zeroth order and first order of (β) and all higher orders are neglected. At higher (β), the effect of
neglecting higher order of (β) results in higher mean squared difference relative to lower (β). Therefore, Perturbation
solution is relatively close to exact solution at low values of (β) as the Perturbation solution is (β) sensitive.

Figure 7 shows the variation of axial velocity with respect to radial distance for Reiner Rivlin and Power Law
constitutive relations. It is observed that axial velocity profile for Reiner Rivlin fluid shows similar trend with respect
to Power law for n > 1. For n < 1, the axial velocity profile is observed to be relatively blunt. Axial velocity profile
of Reiner Rivlin at (β = 0.3) fairly corresponds to the axial velocity profile for Power Law at n = 1.2. Therefore, it
may be concluded that using Reiner Rivlin differential type model, flow field of blood under stenotic artery can be
satisfactorily determined.

The variation of wall shear stress with respect to axial distance along the length of the stenosis for Reiner Rivlin is
plotted in Figure 8. From Figure 8, it is seen that wall shear stress developed in case of Perturbation solution is higher
than the wall shear stress obtained in exact solution. For symmetric stenosis, the wall shear stress profile obtained
from exact solution is symmetric where as in case of Perturbation solution, wall shear stress profile is not symmetric.
The variation of wall shear stress with respect to axial distance along the length of the stenosis for Power Law and
Reiner Rivlin at (β = 0.1) is plotted in Figure 8. Wall shear stress profiles for m = 1 and n = 0.8, 1.0 and 1.2 are
plotted respectively. It may be noted that wall shear stress for Newtonian is obtained by taking m = 1 and n = 1.0
in Power Law model. From Figure 8, it is observed that similar to Reiner Rivlin exact solution, the wall shear stress
profile in case of Power law and Newtonian is symmetric for symmetric stenosis. The wall shear stress profile of
Reiner Rivlin shows significant similarity with profiles of Power law. Thus, the model for Reiner Rivlin is significantly
appropriate in simulating flow field of blood in stenotic artery.

6. conclusion

Mathematical models for axisymmetric blood flow through symmetric mild stenosis are worked out by the analytical
and semi-analytical Perturbation methods. Blood flow is considered to obey Reiner-Rivlin fluid having an additional
cross viscosity parameter. The exact solution and Perturbation solutions are obtained from the z-momentum equation
in non-dimensional form. The expressions for the axial velocity and wall shear stress distribution along the length of
the stenotic region are derived. The nature of variation of axial velocity and wall shear stress are studied by plotting
graphs of the results obtained by exact solution and Perturbation solutions. Further, axial velocity profiles and wall
shear stress profiles of Reiner Rivlin are compared with Newtonian and Power Law profiles. The main findings can be
summarized as follows:

(1) Axial velocity obtained from Perturbation solution is fairly close to the exact solution with a mean squared
difference of 0.024 at (β = 0.3). However, Perturbation solution yields higher axial velocity compared to exact
solution.

(2) At (β = 0.3), the squared difference of axial velocity between exact solution and Perturbation solution becomes
rapidly smaller as r increases.

(3) The mean squared difference of axial velocity between exact solution and Perturbation solution increases as
the ratio of cross viscosity to viscosity (β) increases. This happens because in Perturbation method higher
order of β is ignored, that becomes relatively significant at high values of β.
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Figure 1. Schematic diagram of stenotic artery with co-ordinate system.

Figure 2. Variation of axial velocity with respect to Radial distance for Reiner Rivlin Con-
stitutive Relation with Root Mean Squared Difference=0.0051. n= 2,δ= 0.125 ,s= 0.8, z= 0.5
, Q= 0.3, u= 0.1, and β= 0.3.

(4) Axial velocity profile of Reiner Rivlin has close similarity with axial velocity profiles obtained by taking
different n in Power law constitutive relation. Axial velocity profile of Reiner Rivlin at β = 0.3 is fairly close
to Power law at n = 1.2.

(5) Wall shear stress profile of Reiner Rivlin shows striking similarity with profiles of Power Law and Newtonian.
The profiles are symmetric in symmetric stenosis.

(6) Wall shear stress profile obtained from Perturbation solution is found to be non- symmetric which is in
contradiction to the accepted trend.

Therefore, it is concluded that considering Reiner Rivlin constitutive relation, the exact solution developed in the
present paper can be satisfactorily utilised to simulate flow field of blood in stenosed artery.

7. The Figures
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Figure 3. Root Mean squared difference between axial velocity computed from Exact and Pertur-
bation Solution with respect to Ratio of Cross Viscosity to Viscosity for Reiner Rivlin Constitutive
Relation. n= 2,δ= 0.125 ,s= 0.8, z= 0.5 , Q= 0.3, u= 0.1.

Figure 4. Axial velocity Profile with respect to Radial distance obtained from Exact solution for
Reiner Rivlin and Newtonian Constitutive Relations. n= 2,δ= 0.125,s= 0.8, z= 0.5 , Q= 0.3, u= 0.1
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Figure 5. Axial velocity Profile with respect to Radial distance obtained from Perturbation solution
for Reiner Rivlin and Newtonian Constitutive Relations. n= 2,δ= 0.125 ,s= 0.8, z= 0.5 , Q= 0.3.

Figure 6. Variation of Axial velocity with respect to Radial dis-
tance for Reiner Rivlin, Casson and Power Law Constitutive Relations.
n= 2,δ= 0.125,s= 0.8, z= 0.5, Q= 0.3, u= 0.1, np= 1.2, τ0= 0.1, µca= 1.2, β= 0.3.
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Figure 7. Variation of Wall Shear Stress with respect to axial dis-
tance along the length of Stenosis for Reiner Rivlin Constitutive Relation.
n= 2,δ= 0.125,s= 0.8, Q= 0.3, u= 0.1, m= 2, np= 1.2, τ0= 0.1, µca= 1.2, β= 0.3

Figure 8. Variation of Root Mean Squared Difference in respect of Wall Shear Stress along the
length of Stenosis with respect to Ratio of Cross Viscosity to Viscosity for Reiner Rivlin Constitutive
Relation. n= 2,δ= 0.125 ,s= 0.8, Q= 0.3, u= 0.1
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Figure 9. Variation of Wall Shear Stress with respect to axial distance along the length of Stenosis
for Newtonian and Reiner Rivlin Constitutive Relations. n= 2,δ= 0.125 ,s= 0.8, Q= 0.3, u= 0.1.

Figure 10. Variation of Wall Shear Stress with respect to axial distance along the length of Stenosis
for Newtonian and Power Law at different Power index np. δ= 0.125 ,s= 0.8, Q= 0.3, m= 2.0.
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Nomenclature

u : Non-dimensional Radial Component of velocity of flow
u : Radial Component of velocity of flow [ms−1]
u0 : Averaged velocity on cross section of artery [ms−1]
w : Non-dimensional Axial Component of velocity of flow
w : Axial Component of velocity of flow [ms−1]
p : Non-dimensional Pressure
p : Pressure [Nm−2]
β : Ratio of cross-viscosity to viscosity
Re : Reynold number
a : Length of artery before the commencement of stenosis [m]
b : Length of artery in stenotic region [m]
L : Total length of artery [m]
δ : Maximum height of stenosis [m]
dz : Radius of the tapered arterial segment [m]
d0 : Radius of non-tapered artery in non-stenotic region [m]

θ̃ : Tapered angle of artery, [rad]
ρ : Density of blood [kg m−3]
t : Non-dimensional time
r : Non-dimensional radial distance
z : Non-dimensional axial distance
θ : Non-dimensional angular distance
µ : Coefficient of Newtonian viscosity [kg m−1s−1]
µc : Coefficient of Cross Viscosity [ms−1].
τij : Stress tensor in non-dimensional form
τ ij : Stress tensor [Nm−2]
τ0 : Yield Stress
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