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Abstract

This paper deals with a typical Caputo fractional differential equation. This equation appears in important

applications such as modeling of medicine distributed throughout the body via injection and equation for general

population growth. We use the fixed point theory of concave operators in specific normed spaces to find a
parameter interval for which the unique positive solution exists. Some properties of positive solutions are studied

and illustrative examples are given.
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1. Introduction

There is no doubt that the topic of fractional calculus is one of the useful fields of applied mathematics which has
applications in the areas such as engineering, economics, control theory, and other fields. In recent years the fractional
differential equations have been of great interest, there is a great deal of work focused on studying the existence and
uniqueness of solutions [1, 2, 7, 8].

Discrete fractional difference equations appear in applications. For example, the mathematical model of discrete
fractional difference equation is given by {

∆δ
cy(t) = −µy(t+ δ − 1),

y(0) = a0,

where y is the concentration of the drug in the body at time t after injection, µ is the constant first-order elimination
rate of the drug (the negative sign means the drug is eliminated from the body) and a0 is the initial concentration,
see [4] for more details.

This kind of application motivates us to consider the existence and uniqueness of positive solutions for more general
fractional differential equations of the following form: −∆δ

cy(t) = µf(t+ δ − 1, y(t+ δ − 1)), t ∈ {0, 1, ..., T + 1}
y(δ − n) = a0,
∆y(δ + T ) = ∆jy(δ − n) = 0, j = 2, 3, ..., n− 1,

(1.1)

where δ ∈ (n− 1, n] and a0 ≥ 0, T ≥ n, µ are real numbers, ∆δ
c is the standard Caputo difference, f : [δ − (n− 1), δ +

T ]Nδ−(n−1)
× [0,∞)→ [0,∞) is continuous and increasing.

We arrange the paper in the following manner. Section 2 gives some preliminary results and notations. Section 3 is
devoted to find an interval for parameter µ, for which the unique positive solution of (1.1) exists. In section 4, we study
a standard equation for general population growth and the model with the discrete fractional calculus of medicine
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distributing throughout the body via injection. There are several recent areas of specialized research in mathematical
biology: Enzyme kinetics, biological tissue analysis, cancer modeling, heart and arterial disease modeling being among
the popular ones, see [6]. There are three versions of fractional calculus: continuous, discrete, and quantum. In this
paper, we focus on the discrete version.

2. Preliminaries and basic notations

Definition 2.1. [10] Let Na := {a, a+ 1, ...}, a ∈ R. The difference operator ∆ acts on given function f as follows:

∆f(t) := f(t+ 1)− f(t), t ∈ Na.

Definition 2.2. [10] Suppose t > 1, δ ∈ R. The falling factorial power tδ is given by:

tδ =
Γ(t+ 1)

Γ(t+ 1− δ)
.

Theorem 2.3. [5] According to definition of ∆ and falling fractional power we have:

∆tδ = δtδ−1.

Definition 2.4. [5] The fractional sum of order δ for a given function h, for δ > 0, is defined by

∆−δh(t) :=
1

Γ(δ)

t−δ∑
k=a

(t− σ(k))δ−1h(k),

for t ∈ {δ + a, δ + a + 1, ...} := Nδ+a and σ(k) = k + 1. The δth fractional difference of order δ, for δ > 0, is defined
by ∆δh(t) = ∆n∆δ−nh(t), where t ∈ Na+n−δ and δ ∈ N is such that 0 ≤ n− 1 < δ ≤ n.

The Caputo fractional difference for a given function h for δ > 0, is defined by

∆−δc h(t) := ∆−(n−δ)∆nh(t) =
1

Γ(n− δ)

t−(n−δ)∑
k=a

(t− σ(k))n−δ−1∆nh(k), (2.1)

where 0 ≤ n− 1 < δ ≤ n.

Lemma 2.5. [3] If δ > 0 and h is defined on Na, then

∆−δa+(n−δ)∆
δ
ch(t) = h(t)−

n−1∑
k=0

ck(t− a)k, (2.2)

where ck ∈ R, k = 0, 1, 2, ..., n− 1, and n− 1 < δ ≤ n.

Lemma 2.6. [9] Let h : Na+δ × Na → R be given. Then

∆
( t−δ∑
k=a

h(t, k)
)

=

t−δ∑
k=a

∆th(t, k) + h(t+ 1, t+ 1− δ),

for t ∈ Na+δ.

Let E be a Banach space and P ⊂ E. Then P is called a cone if it satisfies in the following conditions:
(i) if a ∈ P, κ ≥ 0 then κa ∈ P,
(ii) if a ∈ P and −a ∈ P, then a = 0.
We say that (E, ‖.‖) is partially ordered by a cone P and use the notation a � b if b− a ∈ P. If a � b and a 6= b, then
we use the notation a ≺ b. Let P0 be the set of interior points of P. If P0 6= ∅, then P is called solid. If b − a ∈ P0

then we use the notation a � b. The cone P is called normal if there exists a positive number M > 0 such that, for
all a, b ∈ E, if 0 � a � b then ‖a‖ ≤ M‖b‖. The set of [a1, a2] = {a ∈ E|a1 ≤ a ≤ a2} is called the interval between
a1, a2 ∈ E. If T : D→ E satisfies in T (λu+(1−λ)v) ≥ λTu+(1−λ)Tv, for u, v ∈ D, where D is convex and λ ∈ [0, 1],
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then T is called a concave operator. Suppose e is a nonzero element of P. Define Ee = {t ∈ E : ∃k > 0,−ke ≤ t ≤ ke}
with norm

‖t‖e = inf{k > 0 : −ke ≤ t ≤ ke}.

Lemma 2.7. [11] If P is a normal cone, then
(i) Ee is a Banach space with respect to ‖.‖e. Assume that there exists a positive number M > 0 such that ‖t‖ ≤
M‖t‖e,∀t ∈ Ee.
(ii) Pe = Ee ∩ P is a normal solid cone in Ee.

Lemma 2.8. [11] Assume that P is a normal solid cone and A : P→ P be concave. If A(0) > 0 then
(i) there exists a positive number µ∗, such that for 0 ≤ µ < µ∗ there exists a solution y(µ) in P that is unique solution
of the equation

y = µAy. (2.3)

The equation (2.3) does not have positive solution in P for µ ≥ µ∗,
(ii) consider the iterative sequence yn(µ) = µAyn−1(µ), n ≥ 1 where y0(µ) = y0 ∈ P. Then yn(µ) → y(µ) as n → ∞,
for 0 < µ < µ∗,
(iii) the function y(.) is continuous and strictly increasing on [0, µ∗),
(iv) ‖y(µ)‖ → +∞, as µ→ µ∗ − 0,
(v) suppose that there exist ν0 ∈ P and µ0 > 0 where µ0Aν0 ≤ ν0, then µ∗ > µ0.

Lemma 2.9. [11] Assume P is a normal solid cone and A : P0 → P0 is an
increasing operator. Assume that there is positive number r such that 0 < r < 1, and

A(ty) ≥ trAy, ∀x ∈ P0, 0 < t < 1. (2.4)

Let yµ be unique solution of the equation Ay = µy (µ > 0) in P0. Then
(i) yµ is strictly decreasing;
(ii) yµ is continuous (i.e., µ→ µ0 implies ‖yµ − yµ0

‖ → 0);
(iii) limµ→∞ ‖yµ‖ = 0, limµ→0+ ‖yµ‖ = +∞ .

Lemma 2.10. (i) The solution of (1.1) is represented by

y(t) = µ

T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)) + a0, (2.5)

where K(t, k) is the Green’s fuction given by

K(t, k) =
1

Γ(δ)


(δ − 1)(t− δ + n)(T + δ − k − 1)δ−2 − (t− k − 1)δ−1 , 0 ≤ k < t− δ + 1,

(δ − 1)(t− δ + n)(T + δ − k − 1)δ−2 , 0 ≤ t− δ + 1 ≤ k,

(ii) K(t, k) > 0, (t, k) ∈ [δ − (n− 1), δ + T ]Nδ−(n−1)
× [0, T + 1]N0

.

Proof. Using Lemma 2.5

y(t) = − µ

Γ(δ)

t−δ∑
k=0

(t− k − 1)δ−1f(k + δ − 1, y(k + δ − 1)) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

for ci ∈ R, i = 0, 1, 2, ..., n− 1.
On the other hand by applying Lemma 2.6 we have

∆y(t) = − µ

Γ(δ)

t+1−δ∑
k=0

(δ − 1)(t− k − 1)δ−2f(k + δ − 1, y(k + δ − 1)) + c1 + 2c2t

+ ...+ (n− 1)cn−1t
n−2,
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∆2y(t) = − µ

Γ(δ)

t+2−δ∑
k=0

(δ − 1)(δ − 2)(t− k − 1)δ−3f(k + δ − 1, y(k + δ − 1)) + 2c2

+ ...+ (n− 1)(n− 2)cn−1t
n−3,

...

∆n−1y(t) = − µ

Γ(δ)

t+n−1−δ∑
k=0

(δ − 1)(δ − 2)...(δ − n+ 1)(t− k − 1)δ−nf(k + δ − 1, y(k + δ − 1))

+ (n− 1)(n− 2)...cn−1.

From ∆jy(δ − n) = 0, j = 2, 3, ..., n− 1, we get c2 = c3 = ... = cn−1 = 0, and by ∆y(δ + T ) = 0, y(δ − n) = a0, we
have

c1 =
µ

Γ(δ)

T+1∑
k=0

(δ − 1)(T + δ − k − 1)δ−2f(k + δ − 1, y(k + δ − 1)),

and c0 = −(δ − n)c1 + a0, then we have

c0 =
−(δ − n)µ

Γ(δ)

T+1∑
k=0

(δ − 1)(T + δ − k − 1)δ−2f(k + δ − 1, y(k + δ − 1)) + a0.

Therefore, the solution of (1.1) is

y(t) = − µ

Γ(δ)

t−δ∑
k=0

(t− k − 1)δ−1f(k + δ − 1, y(k + δ − 1))

+
−(δ − n)µ

Γ(δ)

T+1∑
k=0

(δ − 1)(T + δ − k − 1)δ−2f(k + δ − 1, y(k + δ − 1))

+
tµ

Γ(δ)

T+1∑
k=0

(δ − 1)(T + δ − k − 1)δ−2f(k + δ − 1, y(k + δ − 1)) + a0

= µ

T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)) + a0.

Thus part (i) is proved. For (ii), if 0 ≤ t−δ+1 ≤ k < T+1 then K(t, k) > 0, it is immediate from the representation
of K(t, k). Thus, it is sufficient to show that K(t, k) > 0, for 0 ≤ k < t− δ+1 < T +1. One can see that ∆tK(t, k) ≥ 0,
for 0 ≤ k < t− δ + 1 < T + 1, we have

∆tK(t, k) = (δ − 1)(T + δ − k − 1)δ−2 − (δ − 1)(t− k − 1)δ−2

≥ (δ − 1)((T + δ − k − 1)δ−2 − (δ − 1)(T + δ − k − 1)δ−2 = 0.

Thus

min
k+δ−1≤t≤T+δ

K(t, k) = K(k + δ − 1, k)

= (δ − 1)(k + δ − 1)(T + δ − k − 1)δ−2 − (δ − 2)δ−1

= (δ − 1)(k + δ − 1)(T + δ − k − 1)δ−2 > 0.

Thus part (ii) is proved. �



CMDE Vol. 10, No. 3, 2022, pp. 567-579 571

3. existence results

We define the Banach space

E =
{
y : [δ − n, δ + T ]Nδ−n → R

}
,

with norm

‖y‖E = max |y(t)|, t ∈ [δ − n, δ + T ]Nδ−n .

Consider the set

P =
{
y ∈ E : y(t) ≥ 0, t ∈ [δ − n, δ + T ]Nδ−n

}
,

clearly P is a normal solid cone in E. Let

e(t) =

T+1∑
k=0

K(t, k).

Using Lemma 2.10 we have K(t, k) > 0. Therefore, e(t) > 0, thus e ∈ P \ {0}. Suppose

Ee =
{
y ∈ E : ∃τ > 0,−τe(t) ≤ y(t) ≤ τe(t),∀t ∈ [δ − n, δ + T ]Nδ−n

}
,

with norm

‖y‖Ee = inf
{
τ > 0 : −τe(t) ≤ y(t) ≤ τe(t),∀t ∈ [δ − n, δ + T ]Nδ−n

}
.

Let P̃ = Ee ∩ P. Using Lemma 2.7, implies that Ee is a Banach space, P̃ is a normal solid cone in Ee and

P̃0 =
{
y ∈ Ee : ∃θ > 0 such that y(t) ≥ θe(t),∀t ∈ [δ − n, δ + T ]Nδ−n

}
.

Besides, there exists a positive number M such that

‖y‖E ≤M‖y‖Ee ,∀y ∈ Ee.

Theorem 3.1. Suppose that f is concave and there are positive numbers σ > 0, α > 0 such that f(t, 0) is lower
bounded by σ and f(t, 1) is upper bounded by α, repectively, for t ∈ [δ − (n− 1), δ + T ]Nδ−(n−1)

. Then

(i) there exists a positive number µ∗ that (1.1) has exactly one solution yµ > 0 in P̃, for µ ∈ (0, µ∗), If µ ≥ µ∗, then

(1.1) does not have positive solution in P̃;
(ii) define

ym(t) = µ

T+1∑
k=0

K(t, k)f(k + δ − 1, ym−1(k + δ − 1)), m ≥ 1,

where y0 ∈ P̃ and µ ∈ (0, µ∗) , then

max
t∈[δ−n,δ+T ]Nδ−n

|ym(t)− yµ(t)| → 0, as m→∞;

(iii) maxt∈[δ−n,δ+T ]Nδ−n
|yµ(t) − yµ0

(t)| → 0, as µ → µ0, for µ ∈ (0, µ∗). If 0 < µ1 < µ2 < µ∗, then yµ1
(t) ≤ yµ2

(t)

and yµ1(t) 6= yµ2(t), ∀t ∈ [δ − n, δ + T ]Nδ−n ;

(iv) ylµ(t) ≤ lyµ(t), l ∈ [0, 1], t ∈ [δ − n, δ + T ]Nδ−n , where µ ∈ (0, µ∗);

(v) if limy→∞
f(t, y)

y
= 0 uniformly on [δ − (n− 1), δ + T ]Nδ−(n−1)

then µ∗ =∞.
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Proof. Using Lemma 2.10 we conclude that y(t) is the solution of (1.1) if and only if

y(t) = µ

T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)) + a0,

where K(t, k) is defined by Lemma 2.10. Without loss of generality, we define the operator A, without a0 by

(Ay)(t) =

T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)).

Clearly y is the solution of (1.1) if and only if y = µAy. For y ∈ P, since K(t, k) and f(t, x) are continuous, then Ay
is continuous. Positivity of K(t, k) and f(t, x) implies that (Ay)(t) ≥ 0, t ∈ [δ − n, δ + T ]Nδ−n . So Ay ∈ P. Concavity
of f(t, ·) for y > 1 implies

f(t, 1) = f(t,
1

y
.y + (1− 1

y
).0) ≥ 1

y
f(t, y) + (1− 1

y
)f(t, 0),

and thus using the assumption of the theorem, we get

f(t, y) ≤ yf(t, 1)− (y − 1)f(t, 0) ≤ yf(t, 1) ≤ αy.

Therefore, for y ∈ P, we have

0 ≤
T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)) ≤
T+1∑
k=0

K(t, k)f(k + δ − 1, ‖y‖E) ≤M1e(t),

where

M1 = max
t∈[δ−(n−1),δ+T ]Nδ−(n−1)

f(t, ‖y‖E) ≤ max
[δ−(n−1),δ+T ]Nδ−(n−1)

f(t, ‖y‖E + 1) ≤ α(‖y‖E + 1).

Thus 0 ≤ (Ay)(t) ≤M1e(t) so Ay ∈ Ee, then Ay ∈ P̃. Hence A is defined from P̃ to P̃. Concavity of f(t, ·) implies A
is concave.

By assumption of the theorem A(0) ≥ σe(t) > 0, so A(0) ∈ P̃0. Using Lemma 2.8 there is a positive number µ∗

such that y = µAy has a unique solution yµ for µ ∈ (0, µ∗). Thus if µ ≥ µ∗, y = µAy does not have solution in P̃.
Let y0 ∈ P̃, and define ym = µAym−1,m = 1, 2, 3, ..., then, ym → yµ, as m → ∞ for µ ∈ (0, µ∗) yµ is continuous,

and strictly increasing. Moreover y(lµ) ≤ lyµ for 0 < µ < µ∗, 0 ≤ l ≤ 1; ‖yµ‖Ee → ∞, as µ → µ∗ − 0, if there exist

ν0 ∈ P̃ and µ0 > 0 such that µ0Aν0 ≤ ν0 then µ∗ > µ0. This means,
(i) for µ ∈ (0, µ∗), the problem (1.1) has exactly one positive solution yµ in P̃ , and for µ ≥ µ∗, the problem (1.1) does

not have positive solution in P̃;
(ii) let y0 ∈ P̃ and for µ ∈ (0, µ∗), and define

ym = µ

T+1∑
k=0

K(t, k)f(k + δ − 1, ym−1(k + δ − 1)),m ≥ 1,

then

max
t∈[δ−n,δ+T ]Nδ−n

|ym(t)− yµ(t)| → 0, as m→∞,

(iii) maxt∈[δ−n,δ+T ]Nδ−n
|yµ(t)− yµ0

(t)| → 0, as µ→ µ0, where 0 < µ0 < µ∗, and if 0 < µ1 < µ2 < µ∗, then ∃θ > 0,

yµ2
(t)− yµ1

(t) ≥ θe(t),∀t ∈ [δ − n, δ + T ]Nδ−n , thus yµ1
(t) ≤ yµ2

(t),∀t ∈ [δ − n, δ + T ]Nδ−n and yµ1
(t) 6= yµ2

(t),
(iv) y(lµ)(t) ≤ lyµ(t), l ∈ [0, 1], t ∈ [δ − n, δ + T ]Nδ−n , where µ ∈ (0, µ∗). Thus the statements (i), (ii), (iii), (iv) hold.

To prove (v), let η = ‖e‖E. Let µ > 0 be an arbitrary positive real number. From limy→∞
f(t, y)

y
= 0 we may choose
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a B > 0 large so that f(t, B) ≤ (ηµ)−1B, ∀t ∈ [δ − (n− 1), δ + T ]Nδ−(n−1)
. Set ν0(t) = η−1Be(t), thus

µ(Aν0)(t) = µ

T+1∑
k=0

K(t, k)f(k + δ − 1, η−1Be(k + δ − 1))

≤ µ

T+1∑
k=0

K(t, k)f(k + δ − 1, B) ≤ η−1Be(t) = ν0(t),

ν0(t)− µ(Aν0)(t) =

T+1∑
k=0

K(t, k)[η−1B − µf(k + δ − 1, η−1Be(k + δ − 1))] ≤M2e(t),

where

M2 = sup
t∈[δ−(n−1),δ+T ]Nδ−(n−1)

[η−1B + µf(t, B)] ≤ η−1B + µα(B + 1).

Therefore, ν0 − µ(Aν0) ∈ P̃.
That is, µAν0(t) ≤ ν0. Using Lemma 2.8 (v), implies that µ∗ > µ. Since µ is any positive real number, we conclude

µ∗ =∞. �

Theorem 3.2. Suppose that following conditions hold
(i) there is a positive number r such that 0 < r < 1, and

f(t, τx) ≥ τ rf(t, x), ∀t ∈ [δ − (n− 1), δ + T ]Nδ−(n−1)
, x ≥ 0, τ ∈ (0, 1),

(ii) there exists a positive number γ such that f(t, 1) ≤ γ,
(iii) mint∈[δ−(n−1),δ+T ]Nδ−(n−1)

f(t, e(t)) > 0, where e(t) is given in Theorem 3.1. Then we have:

(a) the problem (1.1) has exactly one positive solution yµ in P̃0, for µ > 0,
(b) If 0 < µ1 < µ2, then yµ1(t) ≤ yµ2(t), t ∈ [δ − n, δ + T ]Nδ−n and yµ1(t) 6= yµ2(t),
(c) if µ→ µ0(µ0 > 0) then maxt∈[δ−n,δ+T ]Nδ−n

|yµ(t)− yµ0
(t)| → 0,

(d) if µ→ +∞ then maxt∈[δ−n,δ+T ]Nδ−n
|yµ(t)| → +∞, if µ→ 0+ then

maxt∈[δ−n,δ+T ]Nδ−n
|yµ(t)| → a0.

Proof. Let A be defined as in Theorem 3.1. If y > 1 , then

f(t, 1) = f(t,
1

y
.y) ≥ (

1

y
)rf(t, y),

thus

f(t, y) ≤ yrf(t, 1) ≤ γyr.

Therefore, for y ∈ P , we have

0 ≤
T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1))

≤
T+1∑
k=0

K(t, k)f(k + δ − 1, ‖y‖E) ≤M3e(t),
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where

M3 = max
t∈[δ−(n−1),δ+T ]Nδ−(n−1)

f(t, ‖y‖E)

≤ max
t∈[δ−(n−1),δ+T ]Nδ−(n−1)

f(t, ‖y‖E + 1) ≤ γ(‖y‖E + 1)r.

Thus, 0 ≤ Ay(t) ≤ M3e(t), t ∈ [δ − n, δ + T ]Nδ−n , which implies Ay ∈ Ee. Therefore Ay ∈ Ee ∩ P = P̃. Clearly

A : P̃→ P̃.
If y ∈ P̃0, ∃δ > 0 such that y(t) ≥ δe(t) ≥ 0, t ∈ [δ − n, δ + T ]Nδ−n . So if we take τ ∈ (0, 1) such that τ < δ, then

we have

(Ay)(t) =

T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)) ≥
T+1∑
k=0

K(t, k)f(k + δ − 1, θe(k + δ − 1))

≥ τ r
T+1∑
k=0

K(t, k)f(k + δ − 1, e(k + δ − 1)).

Let a = mint∈[δ−(n−1),δ+T ]Nδ−(n−1)
f(t, e(t)). Thus a > 0 and Ay(t) ≥ aτ re(t), t ∈ [δ − n, δ + T ]Nδ−n . Therefore,

A : P̃0 → P̃0. The increasing property of f(t, ·) implies that the operator A is increasing. If y ∈ P̃0 and τ ∈ (0, 1), then

A(τy)(t) =

T+1∑
k=0

K(t, k)f(k + δ − 1, τy(k + δ − 1)) ≥
T+1∑
k=0

K(t, k)τ rf(k + δ − 1, y(k + δ − 1))

≥ τ r
T+1∑
k=0

K(t, k)f(k + δ − 1, y(k + δ − 1)) = τ r(Ay)(t).

Thus, A satisfies in (2.4). Consider the following equation

F (y)(t) = λy(t). (3.1)

Using Lemma 2.9, for any λ > 0, (3.1) has exactly one solution yλ in P̃0, yλ is strictly decreasing, i.e., 0 < λ1 < λ2

implies yλ1 � yλ2 , yλ is continuous, i.e. λ → λ0(λ0 > 0) implies ‖yλ − yλ0‖ → 0, limλ→∞ ‖yλ‖ = 0, limλ→0+ ‖yλ‖ =
+∞.

Let µ =
1

λ
, µ0 =

1

λ0
, µ1 =

1

λ1
, µ2 =

1

λ2
. Then (3.1) is changed to

y(t) = µ(Ay)(t). Using Lemma 2.10, y is the solution of the problem (1.1) if and only if y = µAy. Therefore,

(a) the problem (1.1) has exactly one positive solution yµ in P̃0, for µ > 0,
(b) if 0 < µ1 < µ2, then ∃θ > 0 such that yµ1−yµ2 ≥ θe(t), t ∈ [δ−n, δ+T ]Nδ−n and thus yµ1 ≤ yµ2 ,∀t ∈ [δ−n, δ+T ]Nδ−n
and yµ1 6= yµ2 ,
(c) if µ→ µ0(µ0 > 0) then maxt∈[δ−n,δ+T ]Nδ−n

|yµ(t)− yµ0
(t)| → 0,

(d) if µ→ +∞ then maxt∈[δ−n,δ+T ]Nδ−n
|yµ(t)| → +∞ , if µ→ 0+ then

maxt∈[δ−n,δ+T ]Nδ−n
|yµ(t)| → a0. �

4. Examples

Example 4.1. Consider the problem
∆1.8
c y(t) + µ((y(t+ δ − 1))

1
3 + et) = 0

y(δ − 2) = a0,

∆y(10.8) = 0.

(4.1)



CMDE Vol. 10, No. 3, 2022, pp. 567-579 575

where δ = 1.8, T = 9, µ > 0, is an integer and

f(t, y) = ((y(t))
1
3 + et), ∀t ∈ [0.8, 10.8]N0.8

Clearly f(t, y) : [0.8, 10.8]N0.8 × R+ → R+ is continuous, increasing and concave. Take σ ∈ (0, 1), α ≥ 1 + e10. Then

f(t, 0) = et ≥ 1 ≥ σ, f(t, 1) = 1 + et ≤ 1 + e10 ≤ α.

It can be seen that limy→∞
f(t, y)

y
= 0 uniformly on [0.8, 10.8]N0.8

. Using Theorem 3.1, µ∗ =∞. Therefore

(i) the problem(4.1) has a unique positive solution yµ in P̃, for µ ∈ (0,+∞),

(ii) If y0 ∈ P̃ and for µ ∈ (0,+∞), define

ym(t) = a0 + µ

T+1∑
k=0

K(t, k)f(k + δ − 1, ym−1(k + δ − 1)),m = 1, 2, 3, ...,

therefore

max
t∈[−0.2,10.8]Z−0.2

|yµ(t)− yµ0
(t)| → 0, as µ→ µ0.

(iii) maxt∈[−0.2,10.8]Z−0.2
|yµ(t) − yµ0

(t)| → 0, as µ → µ0, where µ ∈ (0,+∞). If 0 < µ1 < µ2 < +∞, then yµ1
(t) ≤

yµ2
(t), for all t ∈ [−0.2, 10.8]Z−0.2

and yµ1
(t) 6= yµ2

(t),
(iv) ylµ(t) ≤ lyµ(t), l ∈ [0, 1], t ∈ [−0.2, 10.8]Z−0.2

, where µ ∈ (0,+∞).

Example 4.2. In this example we consider the problem
∆

15
7
c y(t) + µ((y(t+ δ − 1))

1
3 + et) = 0

y(−6
7 ) = a0,

∆y(5) = ∆2y(−6
7 ) = 0,

(4.2)

where δ = 15
7 , T = 20

7 , µ > 0, is an integer and

f(t, y) =
y

2 + sin t
+ et, ∀t ∈ [

1

7
, 5]N 1

7

Clearly f(t, y) : [ 1
7 , 5]N 1

7

× R+ → R+ is continuous, increasing and concave and

f(t, 0) = et ≥ e 1
7 ≥ σ, f(t, 1) =

1

2 + sin t
+ et ≤ e5 + 1 ≤ α.

Therefore
(i) for µ ∈ (0,+∞), the yµ in P̃, is a unique positive solution for the problem(4.2),

(ii) if y0 ∈ P̃ and for µ ∈ (0,+∞), define

ym(t) = a0 + µ

T+1∑
k=0

K(t, k)f(k + δ − 1, ym−1(k + δ − 1)),m = 1, 2, 3, ...,

therefore

max
t∈[ −6

7 ,5]Z 1
7

|yµ(t)− yµ0(t)| → 0, as µ→ µ0.

(iii) maxt∈[ −6
7
, 5]Z 1

7

|yµ(t) − yµ0
(t)| → 0, as µ → µ0, where µ ∈ (0,+∞). If 0 < µ1 < µ2 < +∞, then yµ1

(t) ≤
yµ2(t),∀t ∈ [−6

7 , 5]Z 1
7

and yµ1(t) 6= yµ2(t),

(iv) ylµ(t) ≤ lyµ(t), l ∈ [0, 1], t ∈ [−6
7 , 5]Z 1

7

, where µ ∈ (0,+∞).

Moreover r = 1
2 . Take γ ≥ 1, then, f(t, 1) = 1

2+sin t + et ≤ e5 + 1 ≤ γ, f(t, e(t)) = e(t) > 0 and thus

mint∈[δ,δ+T ]Nδ
f(t, e(t)) > 0. Thus all requirements of Theorem 3.2 hold. Therefore:
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(i) for µ > 0, this problem has a unique positive solution yµ in P̃0,
(ii) if 0 < µ1 < µ2, then yµ1(t) ≤ yµ2(t), t ∈ [−6

7 , 5]Z 1
7

and yµ1(t) 6= yµ2(t),

(iii) if µ→ µ0(µ0 > 0) then maxt∈[ −6
7 ,5]Z 1

7

|yµ(t)− yµ0
(t)| → 0,

(iv) if µ→ +∞ then maxt∈[ −6
7 ,5]Z 1

7

|yµ(t)| → +∞, if µ→ 0+

then maxt∈[ −6
7 ,5]Z 1

7

|yµ(t)| → a0.

Example 4.3. We consider the fractional difference equation{
∆δ
cy(t) = µf(t, y(t+ δ − 1)),

y(δ − 1) = a0,
(4.3)

where 0 < δ ≤ 1, f : [δ, δ + T ]Nδ × [0,∞)→ [0,∞) is continuous and increasing. The sulotion y(t) of problem (4.3), is
given by

y(t) = a0 +
µ

Γ(δ)

t−δ∑
k=a

(t− k − 1)δ−1f(t, y(k + δ − 1)), (4.4)

where K(t, k) = (t− k − 1)δ−1, which is positive, thus Theorems 3.1 and 3.2 hold.
In the special case if f(t, y) = y(t) the problem (4.3) is the standard discrete equation for general population growth,

that means{
∆δ
cy(t) = µy(t+ δ − 1),

y(δ − 1) = a0.
(4.5)

In this simplest model, µ tells us how fast the population is changing at any given population level and a0 represents
the initial population size.

To obtain an explicit formula for this solution, we use the method of successive approximation. Let y0(t) = a0 and

ym(t) = a0 + µ∆−δc ym−1(t+ δ − 1).

Using power formula for m = 1 implies

y1(t) = a0 + µ∆−δc y0(t+ δ − 1) = a0 + µ∆−δc
(t+ δ − 1)δ−1

Γ(δ)
a0

= a0 +
µ

Γ(2δ)
(t+ δ − 1)2δ−1a0 = a0

[
1 +

µ

Γ(2δ)
(t+ δ − 1)2δ−1

]
.

Using the same manner for m = 2 implies

y2(t) = y1(t) + µ∆−δc y1(t+ δ − 1)

= a0 +
µ

Γ(2δ)
(t+ δ − 1)2δ−1a0 +

µ2

Γ(3δ)
(t+ 2δ − 1)3δ−1a0

= a0

[
1 +

µ

Γ(2δ)
(t+ δ − 1)2δ−1 +

µ2

Γ(3δ)
(t+ 2δ − 1)3δ−1

]
.

Now using induction on m and letting m→∞ we obtain the solution

yµ := y(t) = a0 + a0

∞∑
k=1

µk

Γ((k + 1)δ)
(t+ (δ − 1)k)kδ+δ−1. (4.6)

For δ = 1 we have y(t) = a0

∑∞
k=0

µk

k!
tk = a0e

µt on the time scale Z.

For this problem obviously , f(t, y) is continuous, increasing and concave function with respect to t. For 0 < τ < 1,

f(t, τy) = τy(t) > τ
1
2 y(t) = τ rf(t, y), for all t ∈ [δ, δ + T ]Nδ
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where r = 1
2 . Take γ ≥ 1, then, f(t, 1) = 1 ≤ γ. Moreover, f(t, e(t)) = e(t) > 0 and thus mint∈[δ,δ+T ]Nδ

f(t, e(t)) > 0.

Thus all requirements of Theorem 3.2 hold. Therefore:
(i) for µ > 0, this problem has exactly one positive solution yµ in P̃0,
(ii) if 0 < µ1 < µ2, then yµ1(t) ≤ yµ2(t), t ∈ [δ − 1, δ + T ]Nδ−1

and yµ1(t) 6= yµ2(t),
(iii) if µ→ µ0(µ0 > 0) then maxt∈[δ−n,δ+T ]Nδ−1

|yµ(t)− yµ0(t)| → 0,

(iv) if µ→ +∞ then maxt∈[δ−1,δ+T ]Nδ−1
|yµ(t)| → +∞, if µ→ 0+

then maxt∈[δ−1,δ+T ]Nδ−1
|yµ(t)| → a0.

Example 4.4. This example is a sample of a mathematical model of discrete fractional differential equation given by

{
∆δ
cy(t) = −µy(t+ δ − 1),

y(0) = a0,
(4.7)

where y is the concentration of the drug in the body at time t after injection, µ is constant first-order elimination rate
of the drug (the negative sign means drug is eliminated from the body) and a0 is the initial concentration. Therefore

(i) for µ > 0, this problem has exactly one positive solution yµ in P̃0,
(ii) if 0 < µ1 < µ2, then yµ2

(t) ≤ yµ1
(t), and yµ1

(t) 6= yµ2
(t),

(iii) if µ→ µ0(µ0 > 0) then maxt∈[δ−1,δ+T ]Nδ−1
|yµ(t)− yµ0

(t)| → 0,

(iv) if µ→ +∞ then maxt∈[δ−1,δ+T ]Nδ−1
|yµ(t)| → +∞, if µ→ 0+, then maxt∈[δ−1,δ+T ]Nδ−1

|yµ(t)| → a0.

The solution of the problem (4.7), is given by

y(t) = a0 +
−µ
Γ(δ)

t−δ∑
k=a

(t− k − 1)δ−1y(k + δ − 1). (4.8)

Thus exact solution is given by

yµ := y(t) = a0 + a0

∞∑
k=1

(−µ)s

Γ((k + 1)δ)
(t+ (δ − 1)k)kδ+δ−1. (4.9)

For δ = 1 we have y(t) = a0

∑∞
k=0

(−µ)k

k!
tk = a0e

−µt on the time scale Z.
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Figure 1. Solution of (4.7) for different values of δ, and a0 = 1073, µ = 0.010434

Figure 2. Solution of (4.7) for different values of µ, and a0 = 1073, δ = 0.98

5. Conclusion

Here we study a typical fractional-order differential equation of the form (1.1). Using the fixed point theory of
concave operators, we show that this problem has exactly one positive solution dependent on the parameter µ. We
compute the solution in some cases that appear in applications.

It would be interesting to consider this problem with other definitions of continuous and discrete fractional deriva-
tives. The system of discrete fractional differential equations may be considered for further research.
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