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Abstract In this paper we apply the Homotopy perturbation method to derive the higher-
order asymptotic distribution of the eigenvalues and eigenfunctions associated with

the linear real second order equation of Sturm-liouville type on [0, π] with Neumann
conditions (y′(0) = y′(π) = 0) where q is a real-valued Sign-indefinite number of
C1[0, π] and λ is a real parameter.

Keywords. Sturm-Liouville, Nondefinite problem, Homotopy perturbation method, Asymptotic distribu-

tion.

2010 Mathematics Subject Classification. 34L20, 34A25.

1. Introduction

The theory of the boundary eigenvalue problems associated with Sturm-liouville
equation of the form

y′′ + (λr(x)− q(x))y = 0, (1.1)

where q(x) is assumed continuous dates back to the pioneering research of R.G.D
Richardson and O.Haupt(see [9] and the reference therein for a brief history and
survey). The leading term in the asymptotic expansion of the real eigenvalue was
the subject of the Jorgen’s conjecture dating from 1964, a conjecture that was finally
proved and extended in [1]. The thrust of this conjecture is that, once suitably
related, the positive λ+

m(resp. negative λ−
m) eigenvalues admit the asymptotic estimate

λ±
m ∼ ±m2π2

(
∫ b
a

√
r±(x)dx)2

as m −→ ∞ where r±(x) represent the part of the weight

function r, thus, r±(x) = max(±r(x), 0). Higher order asymptotic distribution of
the eigenvalues was obtained by different methods. For example Liouville transforms
(1.1) by setting

ξ(x0) =

∫ √
r(x)dx, y(x) = r−

1
4 (x)W (ξ),

and obtained

d2W

dξ2
+ (λ−R(x))W = 0, (1.2)
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where

R(ξ) =
r′′(x)

4r2(x)
− 5r′2

16r3(x)
+

q(x)

r(x)
(1.3)

= − d2

r
3
4 dx2

(
1

r
1
4

) +
q(x)

r(x)
. (1.4)

He used the method of variation of parameters to show that the solutions of the
equation (1.2) satisfy in Volterra integral equation

y(x) = c1 cos(
√
λx) + c2 sin(

√
λx) +

1√
λ

∫ x

a

sin
√
λ(x− t)R(t)y(t)dt,

and proposes to solve this equation by the method of successive approximations where
c1 and c2 are some constants. One can apply the above Volterra integral equation to
obtain the asymptotic expressions for the eigenvalues of the equation (1.2) on [0, π]
with the boundary conditions y(0) = y(π) = 0 of the form

λn = n+ 1 +
1

2nπ

∫ π

0

q(x)dx+ o(
1

n2
),

where the corresponding eigenfunction of the eigenvalue λn vanishes n times within
the interval (0, π). More details can be found in [6, 7, 8, 9, 12]. Hochstad assumed
that the equation (1.2) has a solution of the form

y(x) = A(x) sinw(x), y′(x) =
√
λ−R(x)A(x) cosw(x),

by deriving a new differential equation, one can determine A(x) and w(x). By assum-
ing that R(x) has mean value 0, he found the fifth approximation for the eigenvalues
of the equation (1.2) with the boundary conditions y(0) = y(π) = 0. It is of the form√

λn = n+

∫ π

0
q(x)2dx− q′(π) + q′(0)

8n3π
+O(

1

n4
).

For more details see ([5], P.154). In [2] the asymptotic formula for the eigenvalues
and eigenfunctions of Sturm-Liouville problem with the Dirichlet boundary conditions
are obtained by using homotopy perturbation method. In this paper we consider the
equation (1.1), when r(x) = 1, with Neumann conditions (y′(0) = y′(π) = 0) and
continue the study of the eigenvalues and eigenfunctions of this problem and exhibit
higher order terms in the asymptotic expansions by using HPM.

2. Homotopy perturbation method

Recently a great deal of interest has been focused on the application of homotopy
perturbation method, because this method is to continuously deform a simple prob-
lem, easy to solve, in to the difficult problem under study. The HPM has bean applied
with great success to obtain the approximate solution of large variety of linear and
nonlinear problems in ordinary differential equations, partial differential equations and
integral differential equations. The homotopy theory becomes a powerful mathemat-
ical tool, when it is successfully coupled with perturbation theory [2, 3, 4, 10, 11, 13].
To describe HPM, we consider the following equation

L(ν) +N(ν)− f(r) = 0, (2.1)
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where L is linear and N is nonlinear operator. By the homotopy technique, a homotopy
on R× [0, 1] which satisfies

H(ν, p) = (1− p)[L(ν)− L(u0)] + p[L(ν) +N(ν)− f(r)], (2.2)

or

H(ν, p) = H(ν)− (1− p)L(u0) + p[N(ν)− f(r)] = 0, (2.3)

is constructed, where p ∈ [0, 1] is an imbedding parameter, ν0 is an initial approxi-
mation of L(ν) = 0. Hence

H(ν, 0) = L(ν)− L(ν0), H(ν, 1) = L(ν) +N(ν)− f(r),

and the changing process of p from 0 to 1, is just that of H(ν, p) from L(ν) − L(ν0)
to L(ν) + N(ν) − f(r). In topology, this is called deformation, L(ν) − L(ν0) and
L(ν) +N(ν)− f(r) are called homotopic. Applying the perturbation technique, due
to the fact that 0 ≤ p ≤ 1 can be considered as a small parameter, we can assume
that the solution of equation (2.1) can be written as a series in p

ν = ν0 + pν0 + p2ν2 + p3ν3 + ..., (2.4)

when p → 1, (3.2) becomes the approximate solution of (2.1).

3. Results

In this section we apply HPM to derive higher-order asymptotic distribution of
eigenvalues and eigenfunctions of Sturm-liouville problem. Consider the equation

y′′ + λy(x) = q(x)y, 0 ≤ x ≤ π, (3.1)

with the Neumann conditions (y′(0) = y′(π) = 0) where q(x) is a real valued square
integrable function on [0, π], i.e., q(x) ∈ L2[0, π]. Now we construct the homotopy
ν(x, p) : [0, π]× [0, 1] → R with

H(ν, p) = (1− p)[L(ν)− L(ν0)] + p[L(ν)− q(x)ν] = 0, (3.2)

where p ∈ [0, 1] is an embedding parameter, ν0 = A cos(nx) is the initial approxima-

tion which satisfies the boundary conditions and L = d2

dx2 + λ is the auxiliary linear
operator. If p = 0 then

H(ν, 0) = L(ν)− L(ν0) = 0,

and if p = 1 then
H(ν, 1) = L(ν)− q(x)ν = 0.

Therefore, as the embedding parameter p increases from 0 to 1, the solution of the
equation

H(ν, p) = 0,

depends upon the embedding parameter p and varies from the initial approximation
ν0(x) to the solution y(x) of equation (3.1). In topology, such a kind of continuous
variation is called deformation. Assume that the solution ν of (3.2) and the eigenvalue
λ can be written as a power series in p

ν = ν0 + pν1 + p2ν2 + ..., (3.3)

λ = λ0 + pλ1 + p2λ2 + ..., (3.4)
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and then the approximation solutions are obtained by

u = lim
p→1

ν = ν0 + ν1 + ν2 + ...,

Λ = lim
p→1

λ = λ0 + λ1 + λ2 + ....

Substituting (3.3) in to (3.2), and equating coefficients of p, we have the following
equations

ν′′0 + λ0ν0 = 0, ν′0(0) = ν′0(π) = 0, (3.5)

ν′′1 + λ0ν1 = −λ1ν0 + q(x)ν0, ν′1(0) = ν′1(π) = 0, (3.6)

ν′′2 + λ0ν2 = −λ2ν0 − λ1ν1 + q(x)ν1, ν′2(0) = ν′2(π) = 0, (3.7)...

or

L(νk) = −
k−1∑
i=0

λk−iνi + q(x)νk−1, ν′k(0) = ν′k(π) = 0, k ≥ 1, (3.8)

where ν0 = A cos(mx) ,m = 1, 2, 3, .... Using the boundary conditions y′(0) = y′(π) =

0 and since the set {
√
2 cos(jx) : j = 1, 2, 3, ...} forms an orthonormal basis for

L2[0, π], it is straightforward that the eigenfunction ν
(n)
k can be expressed by the set

of base functions

{cos(jx)|j = 1, 2, 3, ...}
in the form

ν
(n)
k =

∞∑
j=1

ckj cos(jx), (3.9)

where ckj = ⟨ν(n)k , cos(jx)⟩ and ⟨f, g⟩ =
∫ π

0
f(x)g(x)dx. This provides us with the

so-called rule of solution expression. Substituting (3.9) into (3.6) and simplifying it,

we obtain, due to considering the shifting assumption
∫ 1

0
q(x)dx = 0, without loss of

generality,
∞∑
j=1

(λ
(n)
0 − λ

(j)
0 )c1j cos(jx) +A(λ1 − q(x)) cos(nx) = 0.

Multiplying this equation by cos(mx) and then integrating the result over[0, π] yields
∞∑
j=1

(λ
(n)
0 − λ

(j)
0 )c1j

∫ 1

0

cos(jx) cos(mx)dx+

+A

∫ 1

0

(λ1 − q(x)) cos(nx) cos(mx)dx = 0.

Solving the above equation, we have

λ1 = 2⟨q(x) cos(nx), cos(nx)⟩, (3.10)
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for the case m = n. Also, for the case m ̸= n we deduce

c1m(λ
(n)
0 − λm

0 )∥ cos(nx)∥2 −A⟨q(x) cos(nx), cos(mx)⟩ = 0.

So

λ1 = ⟨cos(2nx), q(x)⟩, (3.11)

c1m = A
⟨q(x), cos(n+m)x⟩+ ⟨q(x), cos(n−m)x⟩

n2 −m2
m ̸= n. (3.12)

Therefore, if we set qj = ⟨q(x) cos(jx)⟩ the solution of (3.6) is

ν
(n)
1 = c1n cos(nx) +A

∞∑
m̸=n;m=1

(qn+m + qn−m)

n2 −m2
cos(mx). (3.13)

Hence the second order approximation of the eigenfunctions are obtained

ν
(n)
0 + ν

(n)
1 = (A+ c1n) cos(nx) +

∞∑
m̸=n;m=1

c1m cos(mx).

From the normalized condition we have A+ c1n =
√
2 and so we obtain

ν
(n)
0 + ν

(n)
1 =

√
2 cos(nx) + (

√
2− c1n)

∞∑
m̸=n;m=1

(qn+m + qn−m)

n2 −m2
cos(mx).

Because of the assumption d2

dx2 ν
(n)
k ∈ L2[0, π] it follows

∑∞
j=1 |c′′kj |2 < ∞ and since

ckj = − 1
j2 c

′′
kj then

∑∞
j=1 j

4|ckj |2 < ∞. Hence ckn = O( 1
nδ+5/2 ) for δ > 0, k ≥ 1. From

∞∑
m̸=n;m=1

1

n2 −m2
= O(

ln(n)

n
),

We deduce

ν
(n)
0 + ν

(n)
1 =

√
2 cos(nx) +

√
2

∞∑
m̸=n;m=1

(qn+m + qn−m)

n2 −m2
cos(mx)+

+O(
ln(n)

nδ+7/2
).

Similarly, substituting (3.3) into (3.6), simplifying it, multiplying the result by cos(mx)
and then integrating over[0, π] yields

−A

2
− 1

2
λ1c1n + c1n⟨q(x) cos(nx), cos(nx)⟩+

+
∞∑

m̸=n;m=1

c1m⟨q(x) cos(mx), cos(nx)⟩ = 0,

for the case m = n. Therefore

λ2 =
∞∑

m1 ̸=n;m1=1

(qn+m1 + qn−m1)
2

n2 −m2
1

. (3.14)
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Also, for the case m ̸= n we obtain

1

2
c2m(n2 −m2) = c1n⟨q(x) cos(nx), cos(mx)⟩+A

∞∑
m1 ̸=n;m1=1

(qn+m1 + qn−m1)

n2 −m2
1

×(−λ1⟨cos(m1x), cos(mx)⟩+ ⟨q(x) cos(m1x), cos(mx)⟩).
So

c2m = c1n
(qn+m + qn−m)

(n2 −m2)
−A

q2n(qn+m + qn−m)

(n2 −m2)2
+

+A
∞∑

m1 ̸=n;m1=1

(qn+m1 + qn−m1)(qm1+m + qm1−m)

(n2 −m2)(n2 −m2
1)

.

Thus the three-order approximations for eigenvalues is

λ
(n)
0 + λ

(n)
1 + λ

(n)
2 = n2 + q2n +

∞∑
m1 ̸=n;m1=1

(qn+m1 + qn−m1)
2

n2 −m2
1

,

and for eigenfunctions

ν
(n)
0 + ν

(n)
1 + ν

(n)
2 = (A+ c1n + c2n) cos(nx)+

(A+ c1n)
∑

m1 ̸=n;m≥1

(qn+m1 + qn−m1)
2

n2 −m2
1

cos(m1x)

−A
∑

m1 ̸=n;m≥1

q2n(qn+m1 + qn−m1)

(n2 −m2
1)

2
cos(m1x)

+A
∑

m1,m2≥1;m1,m2 ̸=n

(qn+m1 + qn−m1)(qm1+m2 + qm1−m2)

(n2 −m2
1)(n

2 −m2)
cos(m2x).

From the normalized condition we must have A + c1n + c2n =
√
2 and similar to

previous approximation we obtain

ν
(n)
0 + ν

(n)
1 + ν

(n)
2 =

√
2 cos(nx) +

√
2

∑
m1 ̸=n;m1≥1

(qn+m1 + qn−m1)

n2 −m2
1

cos(m1x)

−
√
2

∑
m1 ̸=n;m1≥1

q2n(qn+m1 + qn−m1)

(n2 −m2
1)

2
cos(m1x)

+
√
2

∑
m1,m2≥1;m1,m2 ̸=n

(qn+m1 + qn−m1)(qm1+m2 + qm1−m2)

(n2 −m2
1)(n

2 −m2)
cos(m2x)

+O(
ln(n)

nδ+7/2
),

where the first, second and the last sums are of order O( lnn
n ), O( lnn

n3 )and O(( lnn
n )2)

respectively.
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