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Abstract

..

In this paper, we investigate the solutions of a class of ψ-Hilfer fractional differential equations with the initial

values in the sense of ψ-fractional integral by using the successive approximation techniques. Next, the continuous
dependence of a solution for the given Cauchy-type problem is presented.
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1. Preface

This paper tries to investigate some existence results for the following ψ-Hilfer fractional differential equation
involving an initial constraint of the type ψ-Hilfer integral:{

Dα,β;ψu(t) = g(t, u(t)), t ∈ J := (a, b],

I1−γ;ψu(a) = ua,
(1.1)

where Dα,β;ψ denotes the ψ-Hilfer fractional derivative of order α (0 < α < 1) and type β (0 ≤ β ≤ 1), and the
ψ-fractional integral of order 1 − γ (γ = α + β − αβ) is denoted by I1−γ;ψ. Moreover, g : J × R → R is a given
nonlinear continuous function.

The idea of fractional calculus and fractional order differential equations and inclusions has been a subject of
interest not only among mathematicians but also among physicists and engineers. Indeed, we can find numerous
applications in rheology, porous media, viscoelasticity, electrochemistry, electromagnetism, signal processing, optics,
geology, viscoelastic materials, biosciences, statistical physics, thermodynamics, neural networks, etc. In recent years,
there has been a significant development in fractional calculus techniques in ordinary and partial differential equations,
difference differential equations, and inclusions, some recent contributions can be seen in, [2, 3, 8, 11, 13–15]. In the
meantime, a real generalization of the famous Riemann-Liouville, and Caputo fractional operators [10, 12] is Hilfer
fractional derivatives which has attracted much attention among various scientific disciplines. Some information about
properties and applications of Hilfer derivative can be found in [7]. Existence and uniqueness results for differential
equations involving Hilfer fractional operators can be seen in [1, 5, 6, 9, 17, 19–21] and references therein.

Indicating the interval of existence of solution is an essential appearance in practical use which cannot be done
by fixed point techniques. This defect of fixed point method is removed by using Picard’s iterative technique and
existence of a solution is investigated by Dhaigude, see [4].

The outline of the article is as follows. In section 2, we declare the weighted spaces, definitions and results. In
section 3, we present our existence of solution using Picard’s iterative technique. In section 4, we discuss continuous
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dependence of the Cauchy type problem for their neighbouring orders and initial conditions. Finally, in the last section
we provide and an example.

2. Auxiliary results

Let C(J,R) be the space of continuous functions from the finite interval J := [a, b], (0 ≤ a < b < ∞) into R. A
related function space is the weighted space Cγ,ψ(J,R), containing all functions g which have the following property

Cγ,ψ(J,R) = {g : J → R : (ψ(t)− ψ(a))
γ
g(t) ∈ C(J,R)} , 0 ≤ γ < 1.

Easily, the proper norm for the space Cγ,ψ(J,R), can be defined as follows:

∥g∥Cγ,ψ = ∥(ψ(t)− ψ(a))
γ
g(t)∥C(J,R) = max

t∈J
|(ψ(t)− ψ(a))

γ
g(t)| .

The weighted space Cnγ,ψ(J,R) for n ≥ 1 of the functions g on (J,R) is defined by

Cnγ,ψ(J,R) =
{
g : J → R : g(t) ∈ Cn−1(J,R); g(n)(t) ∈ Cγ,ψ(J,R)

}
, 0 ≤ γ < 1,

with the norm

∥g∥Cnγ,ψ(J,R) =
n−1∑
k=0

∥∥∥g(k)∥∥∥
C(J,R)

+
∥∥∥g(n)∥∥∥

Cγ,ψ(J,R)
.

For n = 0, we have, C0
γ,ψ(J,R) = Cγ,ψ(J,R).

Here we present the following weighted space for our problem as follows

Cα,β1−γ;ψ(J,R) =
{
g : J → R : g ∈ C1−γ;ψ(J,R),Dα,β;ψg ∈ C1−γ;ψ(J,R)

}
,

and
Cγ1−γ;ψ(J,R) =

{
g : J → R : g ∈ C1−γ;ψ(J,R),Dγ;ψg ∈ C1−γ;ψ(J,R)

}
.

It is obvious that
Cγ1−γ;ψ(J,R) ⊂ Cα,β1−γ;ψ(J,R).

Definition 2.1. [16] Let 0 ≤ α ≤ 1, and ψ be an increasing continuously differentiable function on the finite or infinite
interval J := [a, b] (−∞ ≤ a < t < b ≤ ∞) such that ψ′(t) ̸= 0 for any t ∈ J . The left-sided ψ-fractional integral of a
given integrable function g : J → R is defined as:(

Iα;ψ
)
g(t) =

1

Γ(α)

∫ t

a

Lα;ψ(t, s)g(s)ds, t > a. (2.1)

where Lα;ψ(t, s) := ψ
′
(s) (ψ(t)− ψ(s))

α−1
. In this sense, it can be defined the Riemann-Liouville fractional derivative

of the function g with respect to ψ of order α as follows:(
Dα;ψg

)
(t) =

(
1

ψ′(t)

d

dt

)
I1−α;ψg(t)

=
1

Γ(1− α)

(
1

ψ′(t)

d

dt

)∫ t

a

L1−α;ψ(t, s)g(s)ds.

Inspired by the definition of (2.1), we regard an improved version of the classical Caputo derivative, so-called ψ-Caputo
derivative, as follows:

(
CDα;ψg

)
(t) = I1−α;ψ

(
1

ψ′(t)

d

dt

)
g(t). (2.2)

Recently, Sousa and Oliveira have introduced a general definition of fractional derivatives with respect to the increasing
function ψ involving two parameters 0 < α < 1 and 0 ≤ β ≤ 1 , i.e., ψ-Hilfer fractional derivative in [16] as

Dα,β;ψg(t) = Iβ(1−α);ψ
(

1

ψ′(t)

d

dt

)
I(1−β)(1−α);ψg(t). (2.3)
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The following formula delineates a basic relation between ψ-Hilfer fractional derivative and Riemann-Liouville
fractional operators:

Dα,β;ψg(t) = Iγ−α;ψDγ;ψg(t).

Also, the following essential properties hold:

(Iα;ψIβ;ψg)(t) = (Iα+β;ψg)(t), α, β > 0,

Iα;ψ
(
(ψ(t)− ψ(a))δ−1

)
=

Γ(δ)

Γ(α+ δ)
(ψ(t)− ψ(a))α+δ−1, α, δ > 0,

Dα,β;ψ
(
(ψ(t)− ψ(a))δ−1

)
=

Γ(δ)

Γ(δ − α)
(ψ(t)− ψ(a))δ−α−1, 0 < α < 1, 0 ≤ β ≤ 1, δ > 0,

(Dα,β;ψIα;ψg)(t) = g(t), 0 < α < 1, 0 ≤ β ≤ 1, g ∈ C1(J,R),

Iα;ψDα,β;ψg(t) = g(t)− (ψ(t)− ψ(a))γ−1

Γ(γ)
I1−γ;ψg(a), 0 < α < 1, 0 ≤ β ≤ 1, g ∈ C1(J,R),

where γ = α + β − αβ. On the other hand, for 0 < α < 1 and 0 ≤ β ≤ 1, the operator Dα,β;ψ is bounded from
C1
γ;ψ(J,R) into Cγ;ψ(J,R), in which γ = α+ β − αβ.

Lemma 2.2. If α > 0 and 0 ≤ µ < 1, then Iα;ψ is bounded from Cµ;ψ(J,R) into Cµ;ψ(J,R). In addition, if µ ≤ α,
then Iα;ψ is bounded from Cµ;ψ(J,R) into C(J,R).

Lemma 2.3. [18] Let α > 0, g(t) be a nonnegative, nondecreasing continuous function defined on a ≤ t < b, with
g(t) ≤ K for some constant K, and a(t) be a nonnegative function locally integrable on a ≤ t < b (b ≤ ∞). Further
let u(t) be a nonnegative locally integrable on a ≤ t < b function satisfying

|u(t)| ≤ a(t) + g(t)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
u(s)ds, t ∈ J,

with some α > 0. Then

|u(t)| ≤ a(t) +

∫ t

a

[ ∞∑
n=1

(g(t)Γ(α))n

Γ(nα)
ψ

′
(s) (ψ(t)− ψ(s))

nα−1

]
a(s)ds, a ≤ t < b.

3. Existence results

In this part, we prove some results in existence and uniqueness of proposed Cauchy type problem (1.1). Before
starting and proving these results, we list the following condition:

(H1) Lipschitz condition:
There exist a constant ℓ > 0 such that

|g(t, u)− g(t, u)| ≤ ℓ |u− u| ,
for any u, u ∈ R, and t ∈ J .

Lemma 3.1. Let us consider γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. Suppose that g : J × R → R be a
function such that g(·, u(·)) ∈ C1−γ;ψ(J,R) with u ∈ C1−γ;ψ(J,R). If u ∈ Cγ1−γ;ψ(J,R), then u satisfies (1.1), if and
only if u satisfies the following Volterra integral equation of the second kind

u(t) =
ua
Γ(γ)

(ψ(t)− ψ(a))
γ−1

+
1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds. (3.1)

Lemma 3.2. Consider γ = α + β − αβ, with 0 < α < 1 and 0 ≤ β ≤ 1, then the ψ-Riemann-Liouville fractional
integral operator Iα;ψ is bounded from C1−γ;ψ(J,R) to C1−γ;ψ(J,R):∥∥Iα;ψg∥∥

C1−γ;ψ
≤M

B(γ, α)

Γ(α)
(ψ(t)− ψ(a))

α
, (3.2)

where, M is the bound of bounded function g.



4 S. HARIKRISHNAN, O. BAGHANI, AND K. KANAGARAJAN

Proof. According to Lemma 2.2, the result follows. Now we prove the estimate (3.2), we have∥∥Iα;ψg∥∥
C1−γ;ψ

=
∥∥∥(ψ(t)− ψ(a))

1−γ
Iα;ψg

∥∥∥
C

≤ ∥g∥C1−γ;ψ

B(γ, α)

Γ(α)
(ψ(t)− ψ(a))

α
,

therefore, we get,∥∥Iα;ψg∥∥
C1−γ;ψ

≤M
B(γ, α)

Γ(α)
(ψ(t)− ψ(a))

α
.

�

Theorem 3.3. Suppose that γ = α+β−αβ, with 0 < α < 1 and 0 ≤ β ≤ 1. If g : J ×R → R be a function such that
g(·, u(·)) ∈ C1−γ;ψ(J,R) for each u ∈ C1−γ;ψ(J,R) satisfying the condition [H1], then there exists a unique solution u

for the Cauchy-type problem (1.1) in Cα,β1−γ;ψ(J,R).

Proof. Since the integral equation (3.1) holds for any subinterval [a, t1] of [a, b], we choose t1 such that satisfies

ℓ
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α
< 1. (3.3)

First, the proof of the existence of unique solution u ∈ C1−γ;ψ([a, t1],R) is done for this subinterval. We proceed as
follows. Set Picard’s sequence functions

u0(t) =
ua
Γ(γ)

(ψ(t)− ψ(a))
γ−1

, (3.4)

um(t) = u0(t) +
1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, um−1(s))ds, m ∈ N. (3.5)

We now show that um(t) ∈ C1−γ;ψ(J,R). From equation (3.4), it follows that u0(t) ∈ C1−γ;ψ(J,R). By Lemma 3.2,
Iα;ψ is a bounded operator from C1−γ;ψ(J,R) into itself, which gives um(t) ∈ C1−γ;ψ(J,R), m ∈ N. By equations
(3.4) and (3.5), we have

∥u1(t)− u0(t)∥C1−γ;ψ([a,t1],R) =
∥∥Iα;ψg(t, u0(t))∥∥C1−γ;ψ([a,t1],R)

.

Now by using Lemma 3.2, we get

∥u1(t)− u0(t)∥C1−γ;ψ([a,t1],R) ≤M
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α
. (3.6)

Furthermore, we obtain

∥u2(t)− u1(t)∥C1−γ;ψ([a,t1],R)

≤M
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α

(
ℓ
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α

)
. (3.7)

Repeating this process leads to

∥um(t)− um−1(t)∥C1−γ;ψ([a,t1],R)

≤M
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α

(
ℓ
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α

)m−1

. (3.8)

By equation (3.2), we get

∥um(t)− um−1(t)∥C1−γ;ψ([a,t1],R) → 0, as m→ +∞. (3.9)
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Applying Lemma 3.2, it can be shown that∥∥Iα;ψg(t, um(t))− Iα;ψg(t, u(t))
∥∥
C1−γ;ψ([a,t1],R)

≤ ℓ
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α ∥um(t)− u(t)∥C1−γ;ψ([a,t1],R) ,

and hence by Lemma 3.2,∥∥Iα;ψg(t, um(t))− Iα;ψg(t, u(t))
∥∥
C1−γ;ψ([a,t1],R)

→ 0, as m→ +∞. (3.10)

From equations (3.9) and (3.10), it can be verified that u(t) is the solution of (3.1) in C1−γ;ψ([a, t1],R).
Now for the uniqueness of the solution u(t), let there exists two different solutions u(t) and v(t) for (3.1) on [a, t1].

Substituting them into (3.1) and applying Lemma 2.2 and considering the condition [H1], we have

∥u(t)− v(t)∥C1−γ;ψ([a,t1],R) ≤
∥∥Iα;ψg(t, u(t))− Iα;ψg(t, v(t))

∥∥
C1−γ;ψ([a,t1],R)

≤ ℓ
B(γ, α)

Γ(α)
(ψ(t1)− ψ(a))

α ∥u(t)− v(t)∥C1−γ;ψ([a,t1],R) . (3.11)

This yields ℓB(γ,α)
Γ(α) (ψ(t1)− ψ(a))

α ≥ 1, which violates the condition (3.3). Thus there is a unique solution u(t) =

u1(t) ∈ C1−γ;ψ([a, t1],R) on the subinterval [a, t1].
Next, we consider the interval [t1, t2], where t2 = t1 + h1, h1 > 0 such that t2 < b. Now the integral equation (3.1)

takes the form

u(t) =
ua
Γ(γ)

(ψ(t)− ψ(a))
γ−1

+
1

Γ(α)

∫ t

t1

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds

+
1

Γ(α)

∫ t1

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds, t ∈ [t1, t2]. (3.12)

Since u(t) is the unique function defined on [a, t1], the last integral is the known function and therefore the integral
equation (3.12) is rewritten in the following form

u(t) =u∗(t) +
1

Γ(α)

∫ t

t1

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds, (3.13)

where

u∗(t) =
ua
Γ(γ)

(ψ(t)− ψ(a))
γ−1

+
1

Γ(α)

∫ t1

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds, (3.14)

is the known function. By a similar argument, we can deduce that there is a unique solution u(t) = u2(t) ∈
C1−γ;ψ([t1, t2],R) on [t1, t2]. Taking the interval [t2, t3], in which t3 = t2 + h2, h2 > a with the constraint t3 < b, and
repeating the above process, one can found a unique solution u(t) ∈ C1−γ;ψ(J,R) of the integral equation (3.1) such
that u(t) = uj(t) ∈ C1−γ;ψ([tj−1, tj ],R) for j = 1, 2, ..., l, and a = u0 < u1 < ... < ul = b. Applying the differential
equation (1.1) and the Lipschitz hypothesis [H1], we can derive∥∥Dα,β;ψum(t)−Dα,β;ψu(t)

∥∥
C1−γ;ψ

= ∥g(t, um(t))− g(t, u(t))∥C1−γ;ψ

≤ ℓ ∥um(t)− u(t)∥C1−γ;ψ
. (3.15)

Clearly, (3.9) and (3.15) implies that Dα,β;ψu(t) ∈ C1−γ;ψ(J,R).
Thus, the proof of the theorem is complete. �
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4. Continuous Dependence

In this part, we first investigate the continuous dependence of solution of the ψ-Hilfer fractional differential equation
via generalized Gronwall’s inequality as a handy tool. Consider the Eq. (1.1). To present the dependence of solution
on the order, let us consider the solutions of two equations with the neighbouring orders. Before we present the
continuous dependence of the Cauchy-type problem (1.1), we will study some results about the Cauchy-type problem
involving ψ-fractional derivative of the form{

Dα;ψu(t) = g(t, u(t)), t ∈ J,

I1−α;ψu(a) = ua.
(4.1)

It was shown that the above problem is equivalent to the following integral equation

u(t) =
ua

Γ(α)
(ψ(t)− ψ(a))

α−1
+

1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds. (4.2)

First we present the continuous dependence of the solution of the Cauchy-type problem involving ψ-fractional differ-
ential equation

Theorem 4.1. Suppose that α > 0, ν > 0 with 0 < α − ν ≤ 1. Let u be a continuous function satisfying Lipschitz
condition [H1] in R. For a ≤ t < h < b, assume that u is the solution of Eq. (1.1) and u is the solution of equation{

Dα−ν;ψu(t) = g(t, u(t)),

I1−(α−ν);ψu(a) = ua.
(4.3)

Then, for a < t ≤ h, the following estimate holds

|u(t)− u(t)| ≤ K1(t) +

∫ t

a

[ ∞∑
k=1

(
ℓΓ(α− ν)

Γ(α)

)k
ψ

′
(s) (ψ(t)− ψ(s))

k(α−ν)−1

Γ(k(α− ν))
K1(s)

]
ds,

where

K1(t) =

∣∣∣∣ ua
Γ(α− ν)

(ψ(t)− ψ(a))
α−ν−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

Γ(α− ν + 1)
− (ψ(t)− ψ(a))

α−ν

(α− ν)Γ(α)

∣∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

(α− ν)Γ(α)
− (ψ(t)− ψ(a))

α

Γ(α+ 1)

∣∣∣∣∣ .
Proof. Solutions of the problems (4.1) and (4.3) are given by

u(t) =
ua

Γ(α)
(ψ(t)− ψ(a))

α−1
+

1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds, (4.4)

and

u(t) =
ua

Γ(α− ν)
(ψ(t)− ψ(a))

α−ν−1
+

1

Γ(α− ν)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1
g(s, u(s))ds, (4.5)
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respectively. Therefore, it follows that

|u(t)− u(t)| =
∣∣∣∣ ua
Γ(α− ν)

(ψ(t)− ψ(a))
α−ν−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

+
1

Γ(α− ν)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1
g(s, u(s))ds

− 1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds

∣∣∣∣
≤
∣∣∣∣ ua
Γ(α− ν)

(ψ(t)− ψ(a))
α−ν−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

∣∣∣∣
+

∣∣∣∣∣
∫ t

a

ψ
′
(s)

(
(ψ(t)− ψ(s))

α−ν−1

Γ(α− ν)
− (ψ(t)− ψ(s))

α−ν−1

Γ(α)

)
g(s, u(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

a

ψ
′
(s)

Γ(α)

(
(ψ(t)− ψ(s))

α−ν−1 − (ψ(t)− ψ(s))
α−1

)
g(s, u(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1

Γ(α)
(g(s, u(s))− g(s, u(s))) ds

∣∣∣∣∣
≤
∣∣∣∣ ua
Γ(α− ν)

(ψ(t)− ψ(a))
α−ν−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

Γ(α− ν + 1)
− (ψ(t)− ψ(a))

α−ν

(α− ν)Γ(α)

∣∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

(α− ν)Γ(α)
− (ψ(t)− ψ(a))

α

Γ(α+ 1)

∣∣∣∣∣
+

ℓ

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1 |u(s)− u(s)| ds.

Then, by Gronwall’s Lemma 2.3, we have,

|u(t)− u(t)| ≤ K1(t) +

∫ t

a

[ ∞∑
k=1

(
ℓΓ(α− ν)

Γ(α)

)k
ψ

′
(s) (ψ(t)− ψ(s))

k(α−ν)−1

Γ(k(α− ν))
K1(s)

]
ds.

This completes the proof of the claim given above. �

Next, we study the continuous dependence of the solution on the order of the Cauchy-type problem (1.1) involving
ψ-Hilfer fractional differential equation using Gronwall’s Lemma, for this we consider the initial condition that given
in (1.1), and the solutions of two initial value problems with a neighbouring orders and a neighbouring initial values.

Theorem 4.2. Consider α > 0, ν > 0 with 0 < α − ν ≤ 1. Let u be a continuous function satisfying Lipschitz
condition [H1] in R. For a ≤ t < h < b, assume that u is the solution of Eq. (1.1) and u is the solution of equation{

Dα−ν,β;ψu(t) = g(t, u(t)),

I1−γ−ν(β−1);ψu(a) = ua.
(4.6)

Then, for a < t ≤ h, the following inequality holds

|u(t)− u(t)| ≤ K2(t) +

∫ t

a

[ ∞∑
k=1

(
ℓΓ(α− ν)

Γ(α)

)k
ψ

′
(s) (ψ(t)− ψ(s))

k(α−ν)−1

Γ(k(α− ν))
K2(s)

]
ds,
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in which

K2(t) =

∣∣∣∣ ua
Γ(γ + ν(β − 1))

(ψ(t)− ψ(a))
γ+ν(β−1) − ua

Γ(γ)
(ψ(t)− ψ(a))

γ−1

∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

Γ(α− ν + 1)
− (ψ(t)− ψ(a))

α−ν

(α− ν)Γ(α)

∣∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

(α− ν)Γ(α)
− (ψ(t)− ψ(a))

α

Γ(α+ 1)

∣∣∣∣∣ .
Proof. Solutions of the problems (1.1) and (4.6) are given by

u(t) =
ua

Γ(α)
(ψ(t)− ψ(a))

α−1
+

1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds, (4.7)

and

u(t) =
ua

Γ(γ + ν(β − 1))
(ψ(t)− ψ(a))

γ+ν(β−1)
+

1

Γ(α− ν)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1
g(s, u(s))ds. (4.8)

From these statements we deduce that

|u(t)− u(t)| =
∣∣∣∣ ua
Γ(γ + ν(β − 1))

(ψ(t)− ψ(a))
γ+ν(β−1)−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

+
1

Γ(α− ν)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1
g(s, u(s))ds

− 1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, u(s))ds

∣∣∣∣
≤
∣∣∣∣ ua
Γ(γ + ν(β − 1))

(ψ(t)− ψ(a))
γ+ν(β−1)−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

∣∣∣∣
+

∣∣∣∣∣
∫ t

a

ψ
′
(s)

(
(ψ(t)− ψ(s))

α−ν−1

Γ(α− ν)
− (ψ(t)− ψ(s))

α−ν−1

Γ(α)

)
g(s, u(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

a

ψ
′
(s)

Γ(α)

(
(ψ(t)− ψ(s))

α−ν−1 − (ψ(t)− ψ(s))
α−1

)
g(s, u(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1

Γ(α)
(g(s, u(s))− g(s, u(s))) ds

∣∣∣∣∣
≤
∣∣∣∣ ua
Γ(γ + ν(β − 1))

(ψ(t)− ψ(a))
γ+ν(β−1)−1 − ua

Γ(α)
(ψ(t)− ψ(a))

α−1

∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

Γ(α− ν + 1)
− (ψ(t)− ψ(a))

α−ν

(α− ν)Γ(α)

∣∣∣∣∣
+ ∥g∥

∣∣∣∣∣ (ψ(t)− ψ(a))
α−ν

(α− ν)Γ(α)
− (ψ(t)− ψ(a))

α

Γ(α+ 1)

∣∣∣∣∣
+

ℓ

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−ν−1 |u(s)− u(s)| ds.
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Then, we have by Gronwall’s Lemma 2.3,

|u(t)− u(t)| ≤ K2(t) +

∫ t

a

[ ∞∑
k=1

(
ℓΓ(α− ν)

Γ(α)

)k
ψ

′
(s) (ψ(t)− ψ(s))

k(α−ν)−1

Γ(k(α− ν))
K2(s)

]
ds.

This completes the proof. �

In the next theorem, we shall make a small change of the initial condition that is given in (1.1), as follows

I1−γ;ψu(a) = ua + ϵ, (4.9)

where ϵ is an arbitrary constant.
We state and prove the result as follows:

Theorem 4.3. Let γ = α + β − αβ, where 0 < α < 1 and 0 ≤ β ≤ 1. Let g : J × R → R be a function such that
g(·, u(·)) ∈ C1−γ;ψ(J,R) for any u ∈ C1−γ;ψ(J,R), and satisfies the condition [H1]. For a ≤ t < h < b, assume that u
is the solution of Eq. (1.1) and u is the solution of equation{

Dα,β;ψu(t) = g(t, u(t)), t ∈ J,

I1−γ;ψu(a) = ua + ϵ,
(4.10)

Then,

|u(t)− u(t)| ≤ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
Eα,γ(ℓ (ψ(t)− ψ(a))

α
)

holds, where Eα,γ =
∑∞
k=0

zk

Γ(kα+γ) is Mittag-Leffler function.

Proof. According to Theorem 3.3 we have u(t) = limn→∞ um(t) in which u0(t) and um(t) are as defined in equations
(3.4) and (3.5). Clearly, it can be seen that u(t) = limn→∞ um(t), and

u0(t) =
ua + ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
, (4.11)

um(t) = u0(t) +
1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
g(s, um−1(s))ds. (4.12)

It follows from (3.4) and (4.11) that

|u0(t)− u0(t)| =
∣∣∣∣ ua
Γ(γ)

(ψ(t)− ψ(a))
γ−1 − ua + ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1

∣∣∣∣
≤ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
. (4.13)

Now, by using equations (3.5) and (4.12) and applying the Lipschitz condition [H1], we get

|u1(t)− u1(t)| =
∣∣∣∣ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1

+
1

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1
(g(s, u0(s))− g(s, u0(s))) ds

∣∣∣∣
≤ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1

+
ℓ

Γ(α)

∫ t

a

ψ
′
(s) (ψ(t)− ψ(s))

α−1 |u0(s)− u0(s)| ds

≤ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1

[
1 +

ℓ

Γ(α+ γ)
(ψ(t)− ψ(a))

α

]
.
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Then, we have

|u1(t)− u1(t)| ≤
ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1

[
1 +

ℓ

Γ(α+ γ)
(ψ(t)− ψ(a))

α

]
. (4.14)

Similarly,

|u2(t)− u2(t)| ≤
ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
2∑
i=0

[
ℓi

Γ(αi+ γ)
(ψ(t)− ψ(a))

αi

]
. (4.15)

By induction we can show

|um(t)− um(t)| ≤ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
m∑
i=0

[
ℓi

Γ(αi+ γ)
(ψ(t)− ψ(a))

αi

]
. (4.16)

Taking limit as m→ ∞, we have

|u(t)− u(t)| ≤ ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
∞∑
i=0

[
ℓi

Γ(αi+ γ)
(ψ(t)− ψ(a))

αi

]
=

ϵ

Γ(γ)
(ψ(t)− ψ(a))

γ−1
Eα,γ(ℓ (ψ(t)− ψ(a))

α
), (4.17)

which completes the proof. �

5. An Example

We consider the problem as a special case of ψ-Hilfer fractional derivative by assuming ψ(t) = t. Therefore, the
problem with Hilfer fractional derivative is given by

{
Dα,β;tu(t) = g(t, u(t)), t ∈ [0, 1],

I1−γ;tu(a) = ua,
(5.1)

Now, set α = 2
3 , β = 1

2 and we deduce γ = 5
6 . Consider g(t, u(t)) = e−t−10

1+|u(t)| . Moreover, g satisfies the condition

(A1) with ℓ = 1
e10 , i.e.,

|g(s, u(s))− g(s, y(s))| ≤ 1

e10
|u− y| .

On the other hand we obtain
1
e10

Γ( 23 )
B

(
5

6
,
2

3

)
≈ 0.00005.

This problem satisfies all the assumptions provided above, so the problem (5.1) has a unique solution.

6. Conclusions

This paper attempts to obtain some existence and uniqueness results for a ψ-Hilfer fractional differential equation
involving an initial constraint of the type ψ-Hilfer integral. Next, we investigate the continuous dependence of solutions
of the proposed equation via generalized Gronwall’s inequality. Finally, a simple example of the Cauchy type problem
by assuming ψ(t) = t is offered.
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