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Abstract A double delayed- HIV-1 infection model with optimal controls is taken into account.

The proposed model consists of double time delays and the following five compart-
ments: uninfected cells CD4+ T cells, infected CD4+ T cells, double infected CD4+

T cells, human immunodeficiency virus and recombinant virus. Further, the optimal
controls functions are introduced into the model. Objective functional is constituted

which aims to (i) minimize the infected cells quantity; (ii) minimize free virus par-

ticles number; and (iii) maximize healthy cells density in blood Then, the existence
and uniqueness results for the optimal control pair are established. The optimal-

ity system is derived and then solved numerically using an iterative method with

Runge-Kutta fourth order scheme.
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1. Introduction

HIV-1 is the type of virus which stands for human immunodeficiency virus. HIV-1
attacks the bodys immune system, specifically the CD+4 T cell s which helps the
immune system to fight off infections. If left untreated, HIV-1 reduce the density of
CD+4 T cells in the body which causes the person more likely to get infections or
infection-related cancers. These opportunistic infections make immune system very
weak and this is the stag of AIDS (Acquired Immunodeficiency Syndrome). Currently,
there is no cure for HIV-1 infection. But HIV/AIDS can be controlled with proper
treatment and medical care. These medicines are called antiretroviral which can help
in boosting the immune system against cell infections. These antiretroviral drugs
consist of two groups which are reverse transcriptase inhibitors (RTIs) and protease
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inhibitors (PIs). RTIs break up the conversion of RNA of the virus to DNA so that
new HIV-1 infection of cells is controlled. On the other hand, PIs block the production
of the virus particles by the actively infected CD4+ T cells (see[7, 8, 15, 16, 17]).

In the literature, many mathematical models have been formulated in order to
understand the dynamics of HIV-1 infection [1, 2, 6, 18, 20, 22]. Most of the modern
mathematical models that have been developed apply the optimal control theory.
Optimal control theory is a branch of mathematics developed to find optimal ways of
controlling a dynamical system [11, 12, 13]. For instance, Yusuf and Benyah [5] applied
optimal theory on HIV population model. The study aimed at determining the best
method of controlling the spread of HIV/AIDS within a specified time frame. For the
importance of optimization techniques and optimal control in the study of HIV, we
refer the reader to [8] and references. Here we observe that, often, models introduce
the effect of cellular immune response, also called the cytotoxic T-lymphocyte (CTL)
response, which attacks and kills the infected cells [9]. It has been shown that this
cellular immune response can control the load of HIV viruses [17]. In [7], it is assumed
that CTL proliferation depends, besides infected cells, as usual, also on healthy cells.
Moreover, an optimal control problem associated with the suggested model is studied
[7]. therein

In this article, we formulate time delayed optimal control problem. We incorporate
two controls functions u1 and u2. The control u1 denotes the efficacy of drug therapy
in blocking the infection of new cells, and the control u2 denotes the efficacy of drug
therapy in controlling the production of new viruses. These control functions are
bounded, Lebesgue integrable and represent two different treatment strategies. As
our control classes, we choose measurable functions which are defined on a fixed
interval satisfying 0 ≤ ui(t) < 1 for i = 1, 2. For most of HIV-1 chemotherapy drugs,
the length of treatment is less then 500 days.

The paper is organized as follows. Section 3 is dedicated to the formulation of the
proposed model and section 4 is devoted to the existence of the optimal control pair.
Numerical simulation is introduced in section 5. In the last section, the conclusion is
derived.

2. Formulation of the model

Hence, if we denote u1 the RTI control variable and u2 the PI control variable equa-
tions can be re-written, to accommodate control actions or chemotherapy treatment,
as follows:

dx(t)

dt
= Λ− dx(t)− (1− u1(t))βx(t)v(t),

dy(t)

dt
= (1− u1(t))βe−a1τ1x(t− τ1)v(t− τ1)− ay(t)− αw(t)y(t),
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dz(t)

dt
= αw(t)y(t)− bz(t), (2.1)

dv(t)

dt
= ke−a2τ2(1− u2(t))y(t− τ2)− pv(t),

dw(t)

dt
= cz(t)− qw(t),

with initial conditions

x(0) = x0, y(0) = y0, z(0) = z0, v(0) = v0, w(0) = w0. (2.2)

Here x(t), y(t), z(t), v(t) and w(t) denote the densities of uninfected target cells, in-
fected cells, double infected cells, free virus and recombinant virus at time t, respec-
tively. The parameters in the proposed model can be explain as follows: d is the
natural death rate of uninfected cells and β is infection rate of infected cells. The
healthy cells are assumed to be produced at a constant rate Λ. a is the death rate of
infected cells either due to the action of the virus or the immune system, and in the
mean time, each produces HIV-1 virus particles at a rate k during their life which
on average has length 1/a. α is the infection rate of double infected cells. b, p and
q are deaths rates of double infected cells, pathogen viruses and recombinant virus
respectively. k and c are rates of production of free viruses and double infected cells
respectively.

To proceed further, let the objective functional be defined by

J(u1, u2) =

∫ tf

0

[
Ax(t)− (ν1u

2
1 + ν2u

2
2)

]
. (2.3)

We have to maximized the above objective functional. Here, Ax(t) represents the
benefits of T cells and the other terms ν1u

2
1 + ν2u

2
2 are systemic costs of the drug

treatments, where ν1 and ν2 are positive constants representing the relative weights
attached to the drug therapies which balance the size of the terms u1 and u2. The
quadratic terms in the functional shows that When drugs such as interleukin are
administered in high dose, they are toxic to the human body. Our aim is to increase
the density of the uninfected CD4+ T cells, reducing the viral load (the number of
free virion) and minimizing the cost of treatment.

Next, we find optimal controls functions u?1(t) and u?2(t) such that

J(u?1(t), u?2(t)) = max{J(u1(t), u2(t)) \ (u1(t), u2(t)) ∈ U}, (2.4)

where U = {(u1(t), u2(t)) \ ui} is the control set which is Lebesgue measurable on
[0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2. In our research work, the optimality conditions given
by the Pontryagin Maximum Principle for multiple delayed optimal control problems
of Gaollmann and Maurer [19], is considered. The extremal control for the proposed
probelm, with the same values for the parameters as those of [5], is bangbang, that
is, it attains alternately the boundary values 0 and 1. This type of control is easier
to implement, from a medical point of view, and leads to better results than the ones
previously obtained in [5] for a non-delayed problem with a L2 functional. In [5], the
authors considered a different L2 cost functional for a non-delayed control system.
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Therefore, we claim that our proposed delayed control system describes better the
reality.

3. Optimal Control Existence

Lets define the lagrangian for the optimal control problem as

L(t) = Ax(t)− 1

2
(ξ1u

2
1(t) + ξ2u

2
2(t)). (3.1)

Then, the corresponding Hamiltonian becomes

H
(
x, y, z, v, w, xτ1 , vτ1 , yτ2 , u1, u2, λ(t)

)
=

1

2

(
ν1u

2
1 + ν2u

2
2

)
−Ax(t)

+ λ1(t)
(
Λ− dx(t)− (1− u1(t))βx(t)v(t)

)
+ λ2(t)

(
(1− u1(t))βe−a1τ1xτ1vτ1 − ay(t)− αw(t)y(t)

)
(3.2)

+ λ3(t)
(
αw(t)y(t)− bz(t)

)
+ λ4(t)

(
ke−a2τ2(1− u2(t))yτ2

− pv(t)
)

+ λ5(t)
(
cz(t)− qw(t)

)
,

where xτ1 := x(t− τ1), yτ1 := y(t− τ1) and vτ2 := v(t− τ2). This Hamiltonian is used
to find the control functions for the proposed optimal control problem. To check the
existence of optimal pair, we use Fleming and Rishel [9].

Theorem 3.1. There exists u? = (u?1, u
?
2) ∈ U for the control problem with model

(2.1), such that

max
(u1(t),u2(t))∈U

J(u1(t), u2(t)) = J(u?1(t), u?2(t)).

Proof. To use an existence result [17], the following properties must be checked.
(H1) The controls pair and the corresponding state variables is nonempty.
(H2) The control set U is closed and convex.
(H3) The Right Hand Side of the state system is bounded by a linear function in

the state and control variables
(H4) Finally, we can prove that there exist constants h1, h2 > 0, and κ1 such that

the integrand L(x(t), u1(t), u2(t)) of the objective functional satisfies

L
(
x(t), u1(t), u2(t)

)
= h2 − h1(|u1|2 + |u2|2)κ1/2.

�

Next, we use Pontryagins Maximum Principle for multiple delays [10]to discuss the
following theorem.

Theorem 3.2. Given optimal controls u?1(t), u?2(t) and solutions x?(t), y?(t), z?(t), v?(t),
and w?(t) of the corresponding state system (2.1), there exists adjoint variables λi(t), i =
1, 2, ..., 5, satisfying

dλ1
dt

= A+ λ1(t)
(
d+ (1− u?1(t))βv?(t)

)
+ λ1(t+ τ1)λ2(t)βe−a1τ1

v?(t− τ)(u?1(t)− 1),
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dλ2
dt

= aλ2(t) + (λ2(t)− λ3(t))αw?(t)− λ2(t+ τ2)λ4(t)e−a2τ2

k(1− u∗2(t)),

dλ3
dt

= bλ3(t)− cλ5(t), (3.3)

dλ4
dt

= λ1(t)(1− u?1(t))βx?(t) + λ4(t+ τ1)λ2(t)βe−a1τ1

x?(t− τ1)(u?1(t)− 1) + λ4(t)p,

dλ5
dt

= (λ2(t)− λ3(t))αy?(t) + λ5(t)q,

with transversality conditions

λj(tf ) = 0, j = 1, 2, ..., 5. (3.4)

Proof. Using Pontryagins Maximum Principle [10] , we get the following system of
equations of adjoint variables,

dλ1
dt

= −∂H(t)

∂x
− λ1(t+ τ1)

∂H(t)

∂xτ1
, λ1(tf ) = 0,

dλ2
dt

= −∂H(t)

∂y
− λ(t+ τ2)

∂H(t)

∂yτ2
, λ2(tf ) = 0,

dλ3
dt

= −∂H(t)

∂z
, λ3(tf ) = 0,

dλ4
dt

= −∂H(t)

∂v
(t)− λ4(t+ τ1)

∂H(t)

∂vτ1
, λ4(tf ) = 0,

dλ5
dt

= −∂H(t)

∂w
, λ5(tf ) = 0.

Further, adjusting x(t) = x?(t), y(t) = y?(t), z(t) = z?(t), v(t) = v?(t) and w(t) =
w?(t), we get the adjoint system (3.3) satisfying tranversality conditions λj(tf ) =
0, j = 1, 2, ..., 5. �

Theorem 3.3. The control pair (u?1(t), u?2(t)), which maximizes the objective func-
tional J over the region U , can be written as

u?1(t) = max

{
min

{
β

ν1

(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ))

− λ1(t)x?(t)v?(t), 1

}
, 0

}
,

u?2(t) = max

{
min

{
λ4(t)e−a2τ2ky?(t− τ2)

ν2
, 1

}
, 0

}
.

Proof. By using the optimality conditions, we get the following values

∂H

∂u1
= ν1u

?
1(t)+ λ1(t)βx?(t)v?(t)− λ2(t)βx?(t− τ)v?(t− τ), (3.5)
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and

∂H

∂u2
= ν2u

?
2(t)− λ4(t)e−a2τ2ky?(t− τ2). (3.6)

Solving equations (3.5) and (3.6) simultaneously for the optimal control variables
u?1(t) and u?2(t), we get

u?1(t) =
β

ν1

(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ))− λ1(t)x?(t)v?(t)

)
, (3.7)

u?2(t) =
λ4(t)e−a2τ2ky?(t− τ2)

ν2
. (3.8)

By using the property of control space, equations (3.7) and (3.8) can be written as

u?1(t) =



0 if β
ν1

(
λ2(t)e−a1τ1x?(t− τ1)v?(t− τ1))

−λ1(t)x?(t)v?(t)
)
≤ 0,

β
ν1

(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ))− λ1(t)x?(t)v?(t)

)
, if

0 < β
ν1

(
λ2(t)e−aτx?(t− τ)v?(t− τ))

−λ1(t)x?(t)v?(t)
)
< 1,

1 if β
ν1

(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ))

−λ1(t)x?(t)v?(t)
)
≥ 1.

u?2(t) =


0 if e−a2τ2λ4(t)ky

?(t−τ2)
ξ2

≤ 0,
e−a2τ2λ4(t)ky

?

ν2
if 0 < λ4(t)ky

?(t)
ξ2

< 1,

1 if e−a2τ2λ4(t)ky
?(t)

ν2
≥ 1.

The above two equations for u?1(t) and u?2(t) can be written as (using compact nota-
tion)

u?1(t) = max{min{ β
ν1

(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ)) (3.9)

− λ1(t)x?(t)v?(t)
)
, 1}, 0},

and

u?2(t) = max{min{λ4(t)e−a2τ2ky?(t− τ2)

ν2
, 1}, 0}. (3.10)

Here, we call formula (3.9) and (3.10) for u?1(t) and u?2(t) the characterization of the
optimal control.
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Therefore, we get the following optimality system.

dx?(t)

dt
= Λ− dx?(t)− βx?(t)v?(t)

(
1−max{min{ β

ν1(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ))− λ1(t)x?(t)v?(t)

)
, 1}, 0}

)
,

dy?(t)

dt
=

(
1−max{min{ β

ν1

(
λ2(t)e−a1τ1x?(t− τ)v?(t− τ))

− λ1(t)x?(t)v?(t)
)
, 1}, 0}

)
βx?(t− τ)v?(t− τ)

− ay?(t)− αw?(t)y?(t),
dz?(t)

dt
= αy?(t)w?(t)− bz?(t),

dv?(t)

dt
= k

(
1−max{min{λ4e

−a2τ2y?(t− τ2)

ν2
, 1}, 0}

)
y?(t)

− pv?(t),
dw?(t)

dt
= cz?(t)− qw?(t)ρ2 + (λ2(t)− λ3(t))αy?(t) + λ5(t)q,

(3.11)

along with equations (3.3) and initial conditions (2.3), and (3.4). And the Hamiltonian
H? at (x?, y?, z?, v?, w?, x?τ1 , y

?
τ2 , v

?
τ1 , u

?
1, u

?
2, λ1, λ1, λ2, λ3, λ4, λ5

)
, is given by

H?(t) =
1

2

(
ν1(max{min{ β

ξ1

(
λ2(t)e−a1τ1x?(t− τ1)v?(t− τ1))

− λ1(t)x?(t)v?(t)
)
, 1}, 0})2

+ ν2(max{min{λ4(t)ky?(t− τ2)

ν2
, 1}, 0})2

)
−Ax?(t)

+ λ1

[
Λ− dx?(t)−

(
1−max{min{ β

ξ1

(
λ2(t)e−a1τ1x?(t− τ1)

v?(t− τ1))− λ1(t)x?(t)v?(t)
)
, 1}, 0}

)
βx?(t)v?(t)

]
+ λ2

[(
1−max{min{ β

ν1

(
λ2(t)e−a1τ1x?(t− τ1)v?(t− τ1))

− λ1(t)x?(t)v?(t)
)
, 1}, 0}

)
βe−a1τ1x?(t− τ1)v?(t− τ1)

− ay?(t)− αw?(t)y?(t)
]

+ λ3

[
αw?(t)y?(t)− bz?(t)

]
+ λ4

[
k
(
1−max{min{λ4(t)ke−a2τ2y?(t− τ2)

ν2
, 1}, 0}

)
y?(t− τ2)− pv?(t)

]
+ λ5

[
cz?(t)− qw?(t)

]
.

(3.12)

�
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Figure 1. The graph represents the density of uninfected cells verses
time t in weeks.

To find out the optimal control and state variable we will numerically solve the
above system (3.11) and(3.12).

4. Numerical Simulation

Figures 15 are the simulation results from which we can conclude the effectiveness
of drug therapies based on the densities of uninfected cells, infected cells,free virus,
double infected cells and recombinant virus. Fig 1 shows the density of uninfected
target cells with and without control. We see that without treatment, the density
of uninfected cells decreases drastically. But after treatment the number of these
cells increases. Fig (2) represents the concentration of infected CD4+ T cells with
and without control. The density of infected cells decreases rapidly from the very
beginning of treatment and increases throughout the period of treatment but without
treatment the concentration of infected cells increases. Similarly, Fig (3) shows the
concentration of double infected cells with treatment and without treatment. More-
over, There no direct effect of (RTIs) and (PIs) on the density of double infected cells.
From fig (4), we see that the viral load increases drastically without treatments but
with treatments there is no increase in the concentration of free virus. In fact, instead
of the density to increase it reduces. Fig (5) represents that there in no effect of our
optimal control strategies on the density of recombinant virus as our focus is only
to use the drugs which have the effect only on the reducing the number of pathogen
virus. Fig (6) is the representation of optimal treatments u1 and u2. One can see that
control u1 is on its maximal value all the time and boosts healthy cells efficiently.

5. Conclusion

In this work, we have presented double delayed HIV-1 infection model with two
controls variables. Although, there is no effective therapy for HIV infection but
different treatments have a role to block the virus production in the body and maintain
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Table 1. The values of parameters used for numerical simulation

Parameters Definition Values with sources
λ Production rate of host cell 4 cell/mm3 [3]
d Death rate of host cell 0.01 [16]
β Infection rate of host cell by virus 0.004 mm3/vir [9]
a Death rate of HIV-1 infected cell 0.09[14]
α Infection rate by recombinant 0.004 [9]
b Death rate of double-infected cell 1 (assumed)
k HIV-1 production rate by a cell 0.02 vir/cell [3]
p Removal rate of HIV-1 0.004 (assumed)
c Production rate of recombinant

by a double-infected cell 0.05 vir/cell (assumed)
q Removal rate of recombinant 1 (assumed)
a1 rate of death of cells before infection 0.05 [3]
a2 rate of clearness of virus before attachment to cells 0.01 [9]
τ1 latent period 1 [3]
τ2 virus production period 1 [3]
ξ1 Weight Constant 9000 (assumed)
ξ2 Weight Constant 770 (assumed)
A Constant 100 (assumed)
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Figure 2. The graph represents the density of infected cells verses
time t in weeks.

balance between the virus and the defense system. The mathematical analysis of the
proposed model shows the effectiveness of the model in increasing the density of
uninfected CD4+ T cells, reducing the concentrations of infected cells and free virions
in the body with a minimum side effects and also indirectly minimizing the cost of
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Figure 4. The graph represents the density of pathogen virus verses
time t in weeks.

treatment. Certainly, these results could be useful in developing improved treatment
regimen for addressing the challenge of HIV/AIDS.
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