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Abstract In this paper, a new identification of the Lagrange multipliers by means of the

Sumudu transform, is employed to obtain a quick and accurate solution to the frac-
tional Black-Scholes equation with the initial condition for a European option pricing
problem. Undoubtedly this model is the most well known model for pricing financial
derivatives. The fractional derivatives is described in Caputo sense. This method

finds the analytical solution without any discretization or additive assumption. The
analytical method has been applied in the form of convergent power series with eas-
ily computable components. Some illustrative examples are presented to explain the
efficiency and simplicity of the proposed method.
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1. Introduction

A financial derivative is an instrument whose price depends on, or is derived from,
the value of another asset [15]. Often, this underlying asset is a stock. The concept
of financial derivatives is not new. While there remains some historical debate as
to the exact date of the creation of financial derivatives, it is well accepted that the
first attempt at modern derivative pricing began with the work of Charles Castelly
[5] published in 1877. Castelly’s book was a general introduction to concepts such
as hedging and speculative trading, but it laked mathematical rigor. In 1969, Fisher
Black and Myron Scholes got an idea that would change the world of finance forever.
The central idea of their paper revolved around the discovery that one did not need
to estimate the expected return of a stock in order to price an option written on that
stock. The Black-Scholes model (BS) for pricing stock options has been applied to
many different commodities and payoff structures. The Black-Scholes model for value
of an option is described by the following equation:

∂v

∂t
+

1

2
σ2x2 ∂

2v

∂x2
+ r(t)x

∂v

∂x
− r(t)v = 0, (x, t) ∈ R+ × (0, T ), (1.1)

1



2 MOHAMMAD ALI MOHEBBI GHANDEHARI AND MOJTABA RANJBAR

where v(x, t) is the European option price at asset price x and at time t, T is the
maturity, r(t) is the risk free interest rate and σ(x, t) represents the volatility function
of underlying asset. Let us denote by c(x, t) and p(x, t) the value of the European
call and put options, respectively. Then, the payoff functions are

c(x, t) = max(x− E, 0) , p(x, t) = max(E − x, 0),

where E is the exercise price. The classical Black-Scholes equation was established
under some strict assumptions. Therefore, some improved models have been proposed
to weaken these assumptions, such as models with transactions costs [8, 2], stochastic
volatility model [16], Jump-diffusion model [24], and stochastic interest model [23].
With the discovery of the fractal structure for financial market, the fractional Black-
Scholes models [4, 27, 20] are derived by replacing the standard Brownian motion
involved in the classical model with fractional Brownian motion. Since the fractional
Brownian motion is not a semi-martingale, the arbitrage opportunities exist in the
fractional Black-Scholes model under a complete and frictionless setting.
Fractional differential operators have a long history, having been mentioned by Leib-
niz in a letter to de L’Hopital in 1695. However, it is in the past hundred years that
the most intriguing leaps in engineering and scientific application have been found.
It is widely and efficiently used to describe many phenomena arising in engineering,
physics, economy, and science. A family of numerical [9, 21, 11], semi-analytical
[10, 14], and analytical methods has been developed for solving ordinary and frac-
tional differential equations [18, 22].
The variational iteration method, first proposed by He [14], is a modified general La-
granges multiplier method [17]. This method is a modification of the general Lagrange
multiplier method into an iteration method, which is called correction functional. The
major problem of the variational iteration method is the correct determination of the
Lagrange multiplier, when the method is applied to ordinary and fractional equations.
It is difficult for one to use the integration by parts to derive the Lagrange multipliers
explicitly. In this work, a new modification of variational iteration method is consid-
ered, which is based on the Sumudu transform. Therefore, we apply a new Lagrange
multiplier for pricing European option of fractional version of the Black-Scholes model.

2. Preliminaries

Definition 2.1. A real function y(t), t > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p(> µ), such that y(t) = tpy1(t), where y1(t) ∈ C[0,∞],
and it is said to be in the space Cm

µ iff y(m) ∈ Cµ,m ∈ N.
The Riemann-Liouville fractional integral and Caputo derivative are defined as fol-
lows.
Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0,
of a function
y ∈ Cµ, µ ≥ −1, is defined as:

Jα
t y(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1y(τ)dτ, α > 0, t > 0, J0y(t) = y(t).
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Some of the most important properties of operator Jα for y ∈ Cµ, µ ≥ −1, α, β ≥ 0
and γ > −1, are as follows [26]:
1. JαJβy(t) = J (α+β)y(t);
2. JαJβy(t) = JβJαy(t);

3. Jαtγ = Γ(γ+1)
Γ(α+γ+1) t

α+γ .

Definition 2.3. The fractional derivative of y(t) in the Caputo sense is defined as:

Dα
t y(t) = Jm−α

t Dm
t y(t) =

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1y(m)(τ)dτ,

for m− 1 < α ≤ m, m ∈ N, t > 0, y ∈ Cm
−1.

Note that the relation between Riemann-Liouville fractional integral operator and
modified Riemann-Liouville fractional differential operator is given by Fractional Leib-
nitz formulation as follows:

Jα
t D

α
t y(t) = D−α

t Dα
t y(t) = y(t)−

m−1∑
k=0

tk

k!
yk(0), m− 1 < α ≤ m.

Definition 2.4. The Sumudu transform is defined over the set of functions:

A = {f(t)| ∃M, τ1, τ2 > 0, |f(t)| < Me
|t|
τj , if t ∈ (−1)

j × [0,∞)}, (2.1)

by the following formula

F (u) = S[f(t);u] =

∫ ∞

0

f(ut)e−tdt, u ∈ (−τ, τ). (2.2)

The Sumudu transform the Caputo fractional derivative is defined as follows [7]:

S[Dαf(t)] = u−αS[f(t)]−
m−1∑
k=0

u−α+kf (k)(0+), m− 1 < α ≤ m, (2.3)

and for the Sumudu transform of the n-order derivative, we have

S

[
dnf(t)

dtn

]
= u−n

[
S[f(t)]−

n−1∑
k=0

uk d
kf(0)

dtk

]
. (2.4)

Some fundamental further established properties of Sumudu transform can be found
in [1].
Theorem 2.1. Assuming H(u) = S[h(t)] and G(u) = S[g(t)], the Sumudu convolu-
tion theorem states that the transform of

h(t) ∗ g(t) =
∫ t

0

h(t− τ)g(τ)dτ, (2.5)

is given by

uH(u)G(u) = S[h(t) ∗ g(t)]. (2.6)

Proof. see [3]. �
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Definition 2.5. The Mittag-Leffler function Eα(z) with α > 0 is defined by the
following series representation, valid in the whole complex plane [25]:

Eα(z) =
∞∑

n=0

zn

Γ(αn+ 1)
.

3. Variational iteration method with Sumudu Transform

In order to elucidate the solution procedure of the variational iteration method,
we consider the following general nonlinear fractional differential equation:

∂αv(x, t)

∂tα
+R[x]v(x, t)+N [x]v(x, t) = g(x, t) t > 0, x ∈ R, 0 < α ≤ 1, (3.1)

v(x, 0) = h(x),

where R[x] is the linear operator and N [x] is the general nonlinear operator. Ac-
cording to VIM introduced by He [13], the basic character of the method is to construct
the following correction functional for (3.1):

vn+1(x, t) = vn(x, t)+

∫ t

0

λ(t, τ)

[
dαvn
dτα

+R[ṽn(x, τ)] +N [ṽn(x, τ)]− g(x, τ)

]
dτ,

(3.2)

where the function λ(t, τ) is called the Lagrange multiplier, which can be identified
optimally via variational theory and vn is the nth-order approximate solution. The
initial values are usually used for selecting the zeroth approximation v0(x, t). With λ
determined, several approximations vj , j > 0 follows immediately. Consequently, the
exact solution may be obtained by using

v(x, t) = lim
n→∞

vn(x, t).

To solve (3.1) by variational iteration method, we first determine the Lagrange mul-
tiplier λ that will be identified optimally via integration by parts. But in fractional
calculus, generally, the following integration by parts cannot hold:

Jα
t v

C
0 D

αu = [uv]|t0 − Jα
t u

C
0 D

αv. (3.3)

For this reason, we use of the Sumudu transform for finding the Lagrange multiplier.
Theorem 4.1. If the correction functional for (3.1) is established via the R-L inte-
gration

vn+1 = vn + Jα
t λ(t, τ)

[
dαvn
dτα

+R[vn(x, τ)] +N [vn(x, τ)]− g(x, τ)

]
, (3.4)

the terms R[vn] and N [vn] are restricted variations, the Lagrange multiplier can be
identified as:

λ(t, τ) = −1. (3.5)
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Proof. Take Sumudu transform on the both sides of (3.4)

Vn+1(x, u) = Vn(x, u)+

S

[
Jα
t λ(t, τ)

[
dαvn
dτα

+R[vn(x, τ)] +N [vn(x, τ)]− g(x, τ)

]]
.

(3.6)

Now, consider the term

Jα
t λ(t, τ)

dαvn
dτα

=
1

Γ(α)

∫ t

0

(t− τ)α−1λ(t, τ)
dαvn
dτα

dτ. (3.7)

Setting the Lagrange multiplier λ(t, τ) = λ(X)|X=(t−τ), (3.7) is the convolution of the

function a(t) = λ(t)tα−1

Γ(α) and the term dαvn

dτα . The termsR[vn] andN [vn] are considered

as restricted variations which implies δR[vn] = 0 and δN [vn] = 0, respectively.
Make the correction functional (3.6) stationary with respect to Vn(x, u) and take the
classical variation derivative δ on the both sides of (3.6). Then, we have

δVn+1(x, u) = δVn(x, u) + δ
[
uA(u)u−αVn(x, u)− uA(u)u−αv(x, 0)

]
. (3.8)

From (3.8), we can obtain the equation

1 +A(u)u−α+1 = 0, (3.9)

which results in

A(u) =
−1

u−α+1
. (3.10)

Now, the Lagrange multiplier can be identified as:

λ(t, τ) =
a(t− τ)Γ(α)

(t− τ)α−1
= −1. (3.11)

�

The above Lagrange multiplier was obtained by Laplace transform in [28].

4. New identification of the Lagrange multipliers

In this section, we use a distinct approach to the identification of the new Lagrange
multipliers to fractional differential equations. Taking the above sumudu transform
to both sides of (3.1); then the this equation is transformed into an algebraic equation
as follows:

u−αV (x, u)− u−αv(x, 0) + S

(
R[v(x, t)] +N [v(x, t)]− g(x, t)

)
= 0, (4.1)

where V (x, u) = S[v(x, t)]. With the original idea of the Lagrange multipliers, an
iteration formula for (3.1) can be constructed as:

Vn+1(x, u) = Vn(x, u) + λ(u)

[
u−αVn(x, u)− u−αv(x, 0)

+ S[R[vn(x, t)]] + S[N [vn(x, t)]]− S[g(x, t)]

]
.

(4.2)
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Take the classical variation derivative δ on the both sides of (4.2). Considering
S(R[vn]) and S(N [vn]) as restricted terms, one can implies δS(R[vn]) = 0 and
δS(N [vn]) = 0, respectively. Therefore, we have

δVn+1(x, u) = δVn(x, u) + δ
[
λ(u)u−αVn(x, u)

]
. (4.3)

The optimality condition for the extreme δVn+1

δVn
= 0 from (4.3) leads to

λ(u) = −1/u−α. (4.4)

By applying inverse-Sumudu transform, the iteration formula (4.2) can be explicitly
given as:

vn+1(x, t) =vn(x, t)− S−1

[
1

u−α

[
u−αVn(x, u)− u−αv(x, 0)

+ S[R[vn(x, t)]] + S[N [vn(x, t)]]− S[g(x, t)]

]]
=S−1

[
v(x, 0)−

[
1

u−α

[
S[R[vn(x, t)]] + S[N [vn(x, t)]]− S[g(x, t)]

]]]
,

(4.5)

with the initial iteration v0(x, t) = v(x, 0) = h(x).

5. Numerical examples

In this section, we discuss the implementation of our proposed algorithm and inves-
tigate its accuracy by applying the variational iteration method with coupling of the
Sumudu transform. Some illustrative examples are presented to explain the efficiency
and simplicity of the proposed method.

Example 5.1. Consider the following fractional Black-Scholes option pricing equa-
tion [19, 12]:

∂αv

∂tα
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv, 0 < α ≤ 1, (5.1)

with initial condition v(x, 0) = max(ex − 1, 0). Note that this system of equations
contains just two dimensionless parameters k = 2r

σ2 , where k represents the balance
between the rate of interests and the variability of stock returns and the dimensionless

time to expiry σ2T
2 , even though there are four dimensional parameters, E, T , σ2,

and r, in the original statements of the problem.
Applying the Sumudu transform on both sides of (5.1), we get the following iteration
formula:

Vn+1(x, u) = Vn(x, u) + λ(u)

[
u−αVn(x, u)− u−αv(x, 0)

+S

(
−∂2vn

∂x2
− (k − 1)

∂vn
∂x

+ kvn

)]
.

(5.2)
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After the identification of a Lagrange multiplier λ(u) = −1/u−α, one can derive

vn+1(x, t) = S−1

[
v(x, 0)−

[
1

u−α
S

(
−∂2vn

∂x2
− (k − 1)

∂vn
∂x

+ kvn

)]
. (5.3)

Now, we can obtain the following approximations:

v0(x, t) = v(x, 0) = max(ex − 1, 0),

v1(x, t) = max(ex − 1, 0)− S−1

[
1

u−α
S

(
−∂2v0

∂x2
− (k − 1)

∂v0
∂x

+ kv0

)]
= max(ex − 1, 0) +

tα

Γ(1 + α)
[k max(ex, 0)− k max(ex − 1, 0)],

v2(x, t) = max(ex − 1, 0)− S−1

[
1

u−α
S

(
−∂2v0

∂x2
− (k − 1)

∂v0
∂x

+ kv0

)]
= max(ex − 1, 0) +

tα

Γ(1 + α)
[k max(ex, 0)− k max(ex − 1, 0)]

+
t2α

Γ(1 + 2α)
[−k2 max(ex, 0) + k2 max(ex − 1, 0)],

...

vn(x, t) = max(ex − 1, 0)
tα

Γ(1 + α)
[k max(ex, 0)− k max(ex − 1, 0)]

+
t2α

Γ(1 + 2α)
[−k2 max(ex, 0) + k2 max(ex − 1, 0)] + ...

+
tnα

Γ(1 + nα)
[−(−k)n max(ex, 0) + (−k)n max(ex − 1, 0)],

(5.4)

the exact solution can be given in a compact form

v(x, t) = lim
n→∞

vn(x, t) = max(ex−1, 0)Eα(−ktα)+max(ex, 0)(1−Eα(−ktα)),

(5.5)

where Eα(z) is Mittag-Leffler function in one parameter. The analytical solution of
this problem is consistent with the result obtained by Kumar and et al. in [19]. For
case α = 1, we have

v(x, t) = max(ex − 1, 0)e−kt +max(ex, 0)(1− e−kt), (5.6)

which is an exact solution of the classic Black-Scholes equation.

Example 5.2. Consider the following generalized fractional Black-Scholes equation
as follows [6]:

∂αv

∂tα
+ 0.08(2 + sin(x))2x2 ∂

2v

∂x2
+ 0.06x

∂v

∂x
− 0.06v = 0, (5.7)



8 MOHAMMAD ALI MOHEBBI GHANDEHARI AND MOJTABA RANJBAR

with 0 < α ≤ 1 and initial condition v(x, 0) = max(x− 25e−0.06, 0).
In this example, we have

v0(x, t) = max(x− 25e−0.06, 0). (5.8)

Now, applying the Sumudu transform on both sides of (5.7), we have

Vn+1(x, u) =Vn(x, u) + λ(u)

[
u−αVn(x, u)− u−αv(x, 0)

+ S

(
∂αvn
∂tα

+ 0.08(2 + sin(x))2x2 ∂
2vn
∂x2

+ 0.06x
∂vn
∂x

− 0.06vn

)]
.

(5.9)

Operating the inverse Sumudu transform on both sides of (5.9) and considering λ(u) =
−1/u−α, we can have the following iteration formula:

vn+1(x, t) =vn(x, t)− S−1

[
1

u−α

[
u−αVn(x, u)− u−αv(x, 0)

+ S

(
∂αvn
∂tα

+ 0.08(2 + sin(x))2x2 ∂
2vn
∂x2

+ 0.06x
∂vn
∂x

− 0.06vn

)]]
=S−1

[
v(x, 0)−

[
1

u−α
S

(
∂αvn
∂tα

+ 0.08(2 + sin(x))2x2 ∂
2vn
∂x2

+ 0.06x
∂vn
∂x

− 0.06vn

)]]
.

(5.10)

As a result, the successive approximation can be obtained as follows:

v0(x, t) = max(x− 25e−0.06, 0),

v1(x, t) = v0(x, t)− S−1

[
1

u−α
S

(
∂αv0
∂tα

+ 0.08(2 + sin(x))2x2 ∂
2v0
∂x2

+ 0.06x
∂v0
∂x

− 0.06v0

)]
= max(x− 25e−0.06, 0) +

tα

Γ(1 + α)
[−0.06x+ 0.06 max(x− 25e−0.06, 0)],

v2(x, t) = v0(x, t)− S−1

[
1

u−α
S

(
∂αv1
∂tα

+ 0.08(2 + sin(x))2x2 ∂
2v1
∂x2

+ 0.06x
∂v1
∂x

− 0.06v1

)]
= max(x− 25e−0.06, 0) +

tα

Γ(1 + α)
[−0.06x+ 0.06 max(x− 25e−0.06, 0)]

+
t2α

Γ(1 + 2α)
[−(0.06)2x+ (0.06)2 max(x− 25e−0.06, 0)],

(5.11)

so that the solution v(x, t) of the problem is given by:

v(x, t) = lim
n→∞

vn(x, t) = max(x− 25e−0.06, 0)Eα(0.06t
α)+x(1−Eα(0.06t

α)),
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(5.12)

which is the exact solution of the given fractional Black-Scholes equation, for pricing
the European option.
The exact solution of the given option pricing equation for α = 1 is

v(x, t) = max(x− 25e−0.06, 0)e0.06t + x(1− e0.06t). (5.13)

6. Conclusion

In this paper, a concept of the Sumudu-Lagrange multipliers is successfully applied
for pricing European option of the fractional Black-Scholes equation. This scheme was
clearly very efficient and powerful technique in finding the solutions of the proposed
equations. We note that the integration by parts is not used and the calculation of
the Lagrange multiplier here is much simpler.
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