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Abstract In this paper, we consider a fractional Sturm-Liouville equation of the form,
—°Dgy o Dyt y(t) +a@y(t) = Ay(t), 0<a<l, te€][o,1],
with Dirichlet boundary conditions
Li%()|i=0 =0, and I, %y(t)le=1 =0,

where, the sign o is composition of two operators and q € L2(O7 1), is a real-valued
potential function. We use a recursive method based on Picard’s successive method
to find the solution of this problem. We prove the method is convergent and show
that the eigenvalues are obtained from the zeros of the Mittag-Leffler function and
its derivatives.
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1. INTRODUCTION

Over the last century, it has been demonstrated that many linear second order
differential equations such as Hermite, Laguerre, Jacobi and others could be trans-
formed into Sturm-Liouville equations. Investigation of fractional counterparts of
these equations should lead to some interesting results. It is known that the Le-
gendre polynomials play important roles in numerical analysis. The eigenvalue and
eigenfunction properties of Fractional Legendre Fractional Legendre Equation (FLE)
as well as the corresponding fractional Rodrigues formula are investigated in paper
[8, 19]. It is shown that the Legendre Polynomials resulting, from an (FLE) are the
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same as those obtained from the integer order Legendre Equation. In [28], the authors
have considered a regular fractional Sturm-Liouville problem of two kinds RFSLP-I
and RFSLP-IT of order v € (0,2) with the fractional differential operators both of
Riemann-Liouville and Caputo type, of the same fractional-order = v/2 € (0,1). It
is proven that the regular boundary-value problems RFSLP-I & -II are indeed asymp-
totic cases for the singular counterparts SFSLP-I & -II. During the last three decades,
fractional calculus has been applied to physics and other natural sciences. The use of
differential equations of fractional order appears frequently in several research areas
[13, 18, 21, 22, 25]. Tt has been applied to many fields in science and engineering,
such as viscoelasticity, fluid mechanics, control theory, etc. Much effort has focussed
on a class of well known fractional Sturm-Liouville problems (FSLPs), for example
Mingarelli and Dehghan [11, 12] have investigated the general solution of three or
two-term fractional differential equations of mixed Caputo/Riemann Liouville type in
the case of Dirichlet boundary conditions. From numerical viewpoint, we also refer
the reader for fractional differential equations to [3, 4, 5, 7, 15, 17, 27]. Al-Mdallal
[2] applied the adomian decomposition method for solving fractional Sturm-Liouville
problems. For more details about these problems and their applications, see [2]. In [6],
the aforementioned relation between eigenvalues and zeros of Mittag-leffler function
was shown. The Homotopy Analysis method has been used to approximate of the
eigenvalues of Sturm-Liouville problems of fractional order [1]. Variational method
and Inverse Laplace transform method applied in [10, 20], respectively. In this work,
the successive method for solving the following equation

—<Dg. o D y(t) + ay() = (1), 0<a<1, telol), (L1)
is considered.
This paper is organized as follows. In Section 2, we present some preliminaries which
we will use in this paper. A description and analysis of the successive method is pre-

sented in Section 3. Uniqueness of solution is discussed in Section 4. Two illustrative
examples are given in Section 5. The last section includes our conclusions.

2. PRELIMINARIES

We recall some definitions in Fractional Calculus. We refer the reader to [11, 12]
for further details.

Definition 2.1. The left-sided and the right-sided Riemann-Liouville fractional in-
tegrals 1% and I}~ of order a € R are defined by

I f(t) = ﬁ/ (t—s)*"1f(s)ds, te (a,b], (2.1)
and
b
I f() = ﬁ/t (s— ) f(s)ds, t€ [ab), (2.2)

respectively. Here I'(«) denotes the Euler’s Gamma function. The following property
is easily verified.
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Property 2.2. For a constant C, we have I, C = ff(;i); -C.

Definition 2.3. The left-sided and the right-sided Caputo fractional derivatives ¢ D¢,
and “D;* are defined by

1

Dy f(t) =1%o D" f(t) = Tn—a)

/t(t —s)" M (5)ds, t > a,
' (2.3)
and for t < b,
D) = (e D) = et (s — 0 00 ),
I'n—a) J
respectively, where f is sufficiently differentiable and n — 1 < a < n.

Definition 2.4. The left-sided and the right-sided Riemann-Liouville fractional deriva-
tives D& and Dj_ are defined by

1 dn

D f(t) :== D" o I f(t) = T(n—a) dt"

t
/ (t —s)"" "L f(s)ds, t>a,
and for t < b,

_1\n n b
D f(t) = (—1)"D" o I'" f(t) = anl_)a)jtn/t (s—t)"~1f(s)ds, (2.4)

respectively, where f is sufficiently differentiable and n —1 < a < n.

2.1. The Mittag-Leffler function. The function E,(z) defined by

Eu(z) := I;) Tk D) (z € C, R(a) > 0),

was introduced by Mittag-Leffler [14, 24]. In particular, when @ = 1 and o = 2, we
have

Ei(z) =€*, FEx(z) = cosh(v/2).
The generalized Mittag-Leffler function E, g(2) is defined by

oo
Zk

Baplz) =) T(ak £ 5) (2.5)

k=0
where z, 8 € C and Re(a) > 0. When 8 =1, E, (z) coincides with the Mittag-Leffler
function (2.4):
Eoi1(2) = Eo(2).

Two other particular cases of (2.5) are as follows:

ELQ(Z) = €ZZ— 1, EQ,Q(Z) = Slnh\/(;/g)

Further properties of this special function may be found in [16].
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2.2. Laplace transform.

Definition 2.5 (23, 26]). The Laplace transform of a function f(¢) defined for all
real-valued ¢ > 0, ¢ stands for the time, is the function F(s) which is a unilateral
transform defined by

F(s) = LU0} = [ s (o
0
where s is the frequency parameter.

Definition 2.6 ([23, 26]). The convolution of f(¢) and ¢(t) supported on only [0, c0)
is defined by

(fxg)(t /f (t — s)ds, fyg:[0,00) = R.

Property 2.7 ([26]). The Laplace transform of the convolution of f(t) and g(t) is
given by following relation

L{f*9)()} = LLF ()} x L{g(t)}-
Property 2.8 ([18, 26]). The laplace transform of the derivatives of the Mittag-Leffler
function is given by
klse=P

—stypaktB—1pk) (4 ypeaygp — 7
/O (& a,ﬁ( ) (Sa :F)\)k+1’

(R(p) > |al=).

Property 2.9 ([16, 26]). The Laplace transform of the Riemann-Liouville fractional
derivative is given by

LD} = 5" F(s) = 5 D e (01 < <)
k=0

Property 2.10 ([16, 26]). The Laplace transform of the Caputo fractional derivative
is given by

n—1

L{°Dgf(t)} =s“F(s) — Z sk () (), (n—1<a<n).

k=0
Property 2.11 ([18]). If 0 < R(a) < 1, then

o pa _ (Lref)ot)
IaJrDaJrf(t)_f(t)_T't g
Property 2.12 ([18]). If a > 0 and f(t) € Ly (R*), then

1% o 1% f(t) = <t>:@ / (t— )% 1 f(s)ds.
an
00
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3. ANALYSIS OF THE ITERATIVE METHOD

Theorem 3.1. Let q(t) be continuous in the interval [0,1] and there exist M, N > 0,

such that

(t 8)2(1 1)\ o

|F(T | <N, | 5)** g (s)ds| < M,
then, the following successive method

1

) = 0(0) + 5 / (t = 91\ — q()]yas (s)ds,

to the equation,
—“Dgs o Dgyy(t) +q()y(t) = Ay(t), 0<a <1, te]0,1],
converges to the solution of the differential equation.

Proof. We consider equation (1.1) we have,
& (=P 0 Dgy(®)) = I (A= a®)y(®))

1§ 0 Dyy(t) = Igi (“Dgey(®)limo ) + I (A = a(8) y(®))-

Now, by integration in the interval [0, ¢] yields:

) = S O + S DR 0o
1 ¢ o
+ T'(2a) /0 (t — )%t (A —q(s))y(s)ds, (3.1)

we consider a recursive sequence y,, of function [0, 1] and correspondingly an infinite
series Yu, where u, = Y, — yn—1. By using M-test weierstrass, we conclude that this
series is uniformly convergent to a function u. Since,

Zun—z yn—1>:yN_y07

n=1

therefore y,, tend to u + yo on [0, 1], and from uniform convergence, it follows that
u + Yo is a solution of (3.1), and hence solution of (1.1), now first we define yo and
the y,, on [0,1] by iteration. Let
(t _ 0)(171
I(a)
o [ 9P O ae)mts)as
T(2a) Jo ORI

So, by induction we obtain:

1 ' 2a—1
I'(2a) /0 (t—s) (A= q(5))yn—1(s)ds.

Dy (O + L0

Yo(t) = y(0) + Tatl)

Dy y(t)]i=o,

y1(t) = yo(t) +

Yn(t) = yo(t) +
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And there exist M, N > 0,
(t 5)% 1>\ ’/ )2a=1y
C T(2a) (s)ds| <
thus
lur (t)] = [y1(t) — yo(t)] < MNAt,

and, by induction, if

MTN™AE™
|un(t)| = |yn(t) - yn—l(t)| < a0
then
Mn+1Nn+1Atn+1
|Un+1(t)| = |yn+1(t) - yn(t)l < (n T 1)!

We can now define the nonnegative constant F,, as follows:

M™N"™At"  M"N™A
[un (O] = [gat) = gu-1(D)] < = 2 < TS B (1),

forn > 1,

n=1

The exponential series for exp(t) being convergent for all values of its argument ¢.
So, all the hypothesis for the application of the weierstass M- test [9] are satisfied and

we can deduce that since,
o0

Z(yn - yn71)>

n=1
is uniform convergence on [0,1], to a function wu, then, as we showed above in our
general discussion, the sequence y,, converges uniformaly to y = u+yo on [0,1]. Since
every Yy, is continus on [0, 1], then y is continus also. So,

t

lim [ (t—s)**"" (A —q(s))yn(s)ds

n—oo 0

= /0 (t —s)?> ! ()\ - q(t))y(t)ds.

And from the Lebesque Dominated Convergence Theorem, we arrive
t

lim [ (t—s)**"" (A —q(s))yn(s)ds

n—oo 0

= /0 (t —s)?t ()\ — q(t))y(t)ds.

Therefore, we conclude that y is the solution of the integral equation (3.1) and the
proof is completed. g
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4. UNIQUENESS OF SOLUTION

We suppose Y = Y'(¢) is another solution of integral equation (1.1). The continuous
function y — Y is bounded on [0, 1], suppose that
ly() =Y (@) <p
for all ¢ € [0,1]. Inductively, we can show that
(MN)"p
ly(t) = Y(t)| < .

Since the right hand side of the inequality tends to zero as n — oo then y(t) = Y (¢)
for all ¢ € [0, 1].
5. EXAMPLES

Example 5.1. We consider the fractional differential equation

“Dg, 0 Dgy(t) = (B — Ay(t) (5.1)
with Dirichlet boundary conditions

I7%y(t)]i=0 = 0, and  IjZ“y(t)|i=1 = 0.
So, from equation (3.1) we have
(t—0)y*" (t—0)*

T'(@) MNa+1)

and without loss of generality we assume I&j “y(t)|t=0, “Dy(t)|t=o0 are constant to
be determined by imposing one or more initial/boundary conditions. Now, we assume
q(t) = B. Applying, recursive method we obtained yo(t) = A

y(t) = yo(t) + Lo "y (®)]e=o + - “Dgy(t)]e=o,

00 = (0 + 57 | (¢~ (B~ Nols)ds

_as W, (5.2)

ya(t) = A + (BF(_Q(XA /Ot [t =52t (14 M)}ds
-y Qe B 53

and
i) =a+ ot [ [t syt (5.)
(1+ For + T
- s Qi o B 5)
ao
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and, by induction
B /\)kt2ak
1
( + Z I'(2ak +1) )
S0,
y(t) = lim (1) = A(1+ Baa (B — V). (5.6)

Now, in order to obtain eigenvalues, by choosing terms from equation (5.6) for o — 1,
B =1 and with the following boundary condition

Iy “y(t)|e=1 = 0,
we get
A(l + By~ (VA— 1)2)) - A(l + cos(VA = 1)) —0,
. Ay =14 (nm)2.

Table 1 gives numerical results for different values of o and the curves of eigenfunc-
tions.

TABLE 1. The eigenvalues \,, of the F'SLP of Example 5.1

N « 0.88 0.92 0.96 0.98 0.99 1
11.39062114 11.23807884 11.08067271 11.00014195 10.95942025 10.53008205
33.93455591  33.51171736 33.10109493 32.90039591 32.80120245 11.30670785
20.23021501
32.70278010
15 A, 92.38190053 91.54902644 90.69821292 90.26623055 90.04861476 10.86960440
176.2339295 175.0023995 173.7938292 173.1980121 172.9022529 89.63610735
90.02372131
172.6080703
30 A, 500.3802320 486.6805498 486.1842897 488.7341969 248.1558112 10.86960440
474.4613399 247.1677423
499.4931910 248.3250404
472.0298801
499.9540715

t
>
3

=
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FIGURE 1. The curves of eigenfunction, N = 5 for n = 1 (solid
line), n = 2 (dash dot line), where oo = 0.92, A; = 11.23807884 and
Ao = 33.51171736 for Example 5.1

FIGURE 2. The curves of eigenfunction, N = 5 for n = 1 (solid
line), n = 2 (dash dot line), where oo = 0.99, A; = 10.95942025 and
Ao = 32.80120245 for Example 5.1

Example 5.2. We consider the fractional differential equation
°DE o DS y(t) + (A —tP)y(t) =0
with Dirichlet boundary conditions
Ly (lma =0 . Iy(0))er = 0.
So, from equation (3.1) we have

(t _ O)a—l
I(«)

(t—-0)

N _ )
o+ y(t)|t70 + F(Oé + 1)

y(t) = y(0) + - “Dgyy(t)]e=o,

1171

(5.9)

(el
BE
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and without loss of generality we assume I&jay(t)hzg =0, °Dg,y(t)|i=0 # 0.
Now, we assume ¢(s) = s°. Applying, recursive method we obtain yo(t) = A

yi(t) =

wolt) + @ / (t— 5221\ — %)y (s)ds,

ANt At?0HBD (B 4 1)

= A+ - . (5.10)

And

y2(t)

=y1(t) + —

Finally,

I'2a+1) T'Ra+p+1)

:yo(t)—l—ﬁ/o ((t—s)2a_1(/\—sﬂ) (5.11)

2c 2a+p8
|:A+ A)s _ As I‘(B—Fl)})d’

I'2a+1) T(a+p+1)
AN2tAe AN (20 + B + 1)hats

Pda+1) TPQa+1(a+5+1)
AND(B 4 1)tdatB AT (B + 1) (20 + 28 + 1)t4at28
Fda+p+1) D20+ 8+ 1)I(4a + 28 + 1)

(5.12)

() = (0 + s | ((t el sP)

A)ste AN (200 + B + 1)stath

1) + -

=ya(t) +

IF'da+1) TQRa+1I'(4da+pB+1)

AND(B + 1)s%tB AT(B+ 1)T(2a + 28 + l)s4a+2ﬂ]>d8
4o+ B +1) F2a+ 8+ D'(da+28+1) ’
ANMEY AN (4o + B+ 1)t0e+8

F(6a+1) TD(da+ 1D(6a+5+1)

ANT(2a0+ B+ 1)t0eF8  AN2T(B + 1)t6ats

(5.13)

I'(2a+ 1)I'(6a+ S+ 1) L(6a+ 5+ 1)
AN (2a+ B+ 1) (4a + 28 + 1)t6a+2,8

IF'2a+1I'(4a+ B+ 1)I'(6a +28 4+ 1)
AND(B + 1) (4o + 28 + 1)t6+28

T(da+ B + DT (6a + 23+ 1) (5.14)

AND(B + )T (200 + 28 + 1)t6+28

I'2a+ B8+ 1I'(6a+25+1)
AT(B+ 1D (2a + 28 + 1)T(4a + 36 + 1)t0a+38

F(2a+ B+ D)4+ 28+ 1)I(6a + 33 + 1) (5.15)

Now, in order to obtain eigenvalues, by choosing terms from equation (5.15) and with
following boundary conditions, we have,

A)\3T6a

L ys(t)]imr = L7 (c{m‘fa) /Ot@ -7+ ey

(<)
EE
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ANT (4o + B+ 1)702+8 ANT(2a + B + 1) 70 +F
F(d4a+ D)6+ B+1) T(2a+1)I(6a+5+1)
AND(B + 1)1 AND(2a+ B+ 1)T (4o + 283 + 1)76a+28
 T(6a+B+1) [(2a+ DT (4a + B+ )0 (6a + 26 + 1)
AND(B + )T (4o + 23 + 1) 762 +28
IFda+ B+ 1)I'(6a+25+1)
AND(B + 1D (2a + 283 + 1)76a+28
I'Co+ p+ DI(6a+25+1)
_AD(B+ DP(2a 428 + 1)l (4a + 36 + 1)76a+3ﬂ} }>dT
F'2a+ 4+ 1)T4a+28+1D)I(6a+36+1) li=1 ’
A AX AT (B+1) AN?
T2 —a) Lla+2) T(a+p+2) T(Ba+2)
ANP(2a+ 8 +1) AXND(B+1)
CTQa+1)IBa+f+2) TBa+ps+2)
AT(B+ 1) (2a+28 +1) AN3
F2a+ B+ 1DI'Ba+26+2)  T'(a+2)
AN T (4a + B+ 1) ANT(2a+B+1)
CT(a+1)IGa++2) TRa+ DIT(5a+ 5+ 2)
ANT(B+1) AXN(2a+ B+ 1) (4a+28 +1)
F'Ga+p+2) TRa+1I'da+ 5+ 1DI'(ba+25+2)
ANT(B+ DTM(4a + 28+ 1) ANT(B+ DT (2a+28+1)
FNda+ 8+ DI'ba+28+2) TI'2a+p+ 1)I'(ba+25+2)
AT+ 1DI'2a+28+ 1) (da+38+1)
CT(2a+ B+ 1) (4a+ 28+ )T (5a + 33 + 2)
There is not explicit relation for y,(t), but there is only recursive relation. Now,
in order to obtain eigenvalues, by choosing terms from equation (5.9) and with the
boundary conditions (5.8) we have the following tabel and some curves of the following
eigenfunctions.

TABLE 2. The eigenvalues \,, of the FSLP of Example 5.2
o 0.88 0.92 0.96 0.98 0.99 1
An 2405039224 2.305068561 2.229222390 2.1978936370 2.183555975 2.170000602
17.97371524  18.89035781 19.95455855 20.800803451 21.26965088 21.77123076
25.23795748 34.10701183 38.990140030 41.62707551 44.36889646
26.08584957 34.75041823 40.119474191 43.09634431 46.30580379
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FIGURE 3. The curves of eigenfunctions, for n = 1 (solid line), n = 2
(dash dot line), n = 3 (dash line), where o = 0.92, \; = 2.305068561,
Ao = 18.89035781 and A3 = 26.08584957 for Example 5.2

FIGURE 4. The curves of eigenfunctions, for n = 1 (solid line), n = 2
(dash dot line), n = 3 (dash line), where a = 0.99, A\; = 2.183555975,
Ao = 21.26965088 and A3 = 43.09634431 for Example 5.2

6. CONCLUSION

In this paper, we use a successive method to find the solution of a typical fractional
Sturm-Liouville problem. We also find the approximate of the eigenvalues by the
zeros of Mittag-Leffler function and its derivatives. The eigenvalues coincide with the
asymptotic behavior given by [11, 12], when « tends to 1.
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