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Abstract In this work, we employ a combination of variational iteration method (VIM) and
Padé approximation method, called the VIM-Padé technique, to solve some nonlin-
ear initial value problems and a delay differential equation (DDE). Some examples
are provided to illustrate the capability and reliability of the technique. The ob-
tained results by using the VIM are compared to the results of this technique. This
comparison shows that VIM-Padé technique is more effective than VIM and yields
faster convergence compared to the VIM.
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1. INTRODUCTION

Many phenomena and problems in real world can be described by nonlinear ini-
tial value problems (NIVPs). Also, Delay differential equations appear mostly in
the mathematical modeling of various science and engineering, particularly in the
field of physics, chemistry, population dynamics, bio science and many other fields
[9,11, 16,30, 37]. Although the exact solutions of NIVPs and DDEs are essential,
there are many NIVPs and DDE which cannot be solved analytically. Due to this
fact, finding the favorite approximate solution of nonlinear and delay problems is ab-
solutely necessary. Recently, some suitable and effective methods have been emerged
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for obtaining the approximate solution of NIVPs and DDEs. Homotopy analysis
method [3-6,17-19, 21,22, 26-28, 31, 32, 35, 36], variational iteration method [12—15,
23,25,41], Adomian decomposition method [7, 8, 20, 29, 38, 39], and homotopy per-
turbation method [2] are examples of the methods. J. H. He in [24] proposed the
variational iteration method (VIM) which has been employed by many mathemati-
cians and authors [12-15,23,25,41] in all over the world as a powerful and effective
mathematical tool for obtaining approximate solutions of some problems. Some linear
and nonlinear systems of ordinary differential equations (ODEs) are solved by using
the VIM. The obtained approximate solutions in each iteration of the VIM form a
functional sequence which converges to the exact solution of the problem. One of the
important features of this method is that, in order to solve problems, it does not need
to discretize the variables. Therefore, in some cases, computational round off errors
have no effect on it and, as a result, large computer memory and time are not needed.
The provided solution of the problem by the proposed scheme is in a closed form,
while the techniques based on mesh points, finite difference method [33] for example,
provide the approximation only at mesh points. In spite of these advantages, VIM
has some drawbacks. The invalidity of this method in solving some problems and the
slow convergence, especially in problems which are presented by a differential equa-
tion with complicated non-homogeneous function or functional-differential equation
with proportional delay, are examples of the drawbacks. In the present paper we will
apply a new modification of the mentioned method which is based on the use of Padé
approximation [10,40]. This modification will overcome the mentioned disadvantages
and will accelerate the convergence rate. In this method, called VIM- Padé technique,
to obtain more accurate analytical approximation, we have combined the VIM and
Padé approximation method for solving some nonlinear and delay problems as fol-
lows: first, using the VIM, series solution will be obtained; then, we will apply the fit
Padé approximation to this solution. Three examples will be presented to illustrate
the efficiency of the VIM- Padé technique.

2. BASICS IDEAS OF THE VARIATIONAL ITERATION METHOD AND VIM-PADE
TECHNIQUE

2.1. Variational iteration method. Consider the following functional equation;

L(y) + N(y) = f(z),

where L and N are linear and nonlinear operators, respectively and f(x) is a known
analytical function. According to the variational iteration method, we consider the
following correction functional

Yo (&) = yu(2) + / ALY () + Nin(©) — F()lde,

where A(€) is general Lagrange multiplier which can be obtained optimally by
variational theory. Also ¢, is considered as a restricted variation, i.e. of, = 0.
In this method first, using integration by parts, the Lagrange multiplier A will be
determined. Using the determined Lagrange multiplier and the initial approximation
c[v)
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yo(z), the successive approximations y,+1 , n > 0 of the solution will be readily
obtained. Therefore, the solution will be given by y(x) = lim,_co yn ().

This method gives rapidly convergent successive approximations of the exact so-
lution if such a solution exists. Sometimes, the solutions obtained is possible have
a restricted region of convergence for taking n to be as large as possible. Therefore,
we used the Padé technique on the series obtained to increase the convergence re-
gion. The propose method illustrates that a low number of VIM iterations and Padé
approximation can yield better solutions than VIM.

2.2. VIM-Padé technique. Sometimes, the solutions obtained of VIM as series
have a finite domain of convergence even when n to be as large as possible. There are
various methods to improve the convergence region of solution series. Of these, the
Padé approximation method has attracted much attention that is applied to improve
the accuracy of the VIM solution by a rational function [34]. Therefore, the Padé
technique is used on the series obtained to rise the convergence domain.

The corresponding [m,n| Padé approximation for solution series obtained from
variational iteration method is given by

2 im0 Akt
Pm,nly,(z) = ===————.
() = ST

By using the normalization condition By = 1, we can determine the A, and By

coefficients using formal power series [1].

3. EXAMPLES

In this section, we present two numerical examples to test the accuracy and effi-
ciency of our proposed method.

In this Section we present a detailed computer simulations and discussion of our
proposed method on the results for three problems.For all examples, the exact solu-
tions are available. We performed all the symbolic and numerical computations by
using Maple 18. The following error norms

RMSE = > (Wea (@) = Yap(:))?,

b
L= ¢ / (e () — Yap())2dl,

are computed to show the accuracy of the VIM- Padé method and VIM method and
are used to compare them.

3=

Example 3.1. Consider the following homogeneous nonlinear Emden-Fowler equa-

tion [3/]:

Y+ %y’ -y +3y° =0, (3.1)
with initial conditions

y(0) =1,5/(0) =0.
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According to variational iteration method (VIM); we construct a correct functional
as follows

Yos1 () = yn(a) + / AOWIE) + FUA(6) — 53(0) + 333 0 (3.2)

where A(€) is a general Lagranges multiplier which can be identified optimally via
variational theory; and g, is a restricted variation which 63, = 0. To determine the
optimal value of \(§) we take the variation for both sides with respect to y,(x) obtain

Sy (2) = Syn(z) + 6 / AOWIE) + %y;@ G(E) + 335 (€))de.

Or equivalently

Sy () = Sy (x) + 0 / AOWIE + L0 (Ede

By the integrating the integral at the right side by parts yields

Sy () = Syn () + 011 = X&) + ~\(@)] + 6N (e (2)
+5 [Cunoie - A e
0

€2
This yields the following stationary conditions
AME=1x)=0;
Ig — ) — 1.
N(E=12)=1; (3.3)
EN — A
N — o 0.

Solving (3.3) gives A(§) = §ln(§). Substituting this value into Eq. (3.2) results the
following iterate formula

§

mate) = (o)t [ emer g

) [y (&)+ ¢
Assuming yo(x) = 1; as an initial approzimation that satisfies the initial condition;
from Eq. (3.4) we obtain the following successive approximations and corresponding
[m,n] Padé approzimations for arbitrary m,n
L o

yl(x):lfix ,

Yn(&)=yn(&)+3yn(6)]dE, n >0 (3.4)

1 3 3 29 3 1
11224 6 g8 2 10 12
v (@) 2" T8 T 16" Tre” 30" Tzt

1 3 5 1 477 15821
1224 26, 18 10 12

ys (@) 27 TR T 16" T1Y T 23607 T 1228%0°

5909y, 128307

71680 2621440
The exact solution of (3.1) is given by

1
V1422

y(r) =

(&)
EE
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Therefore, the complete approzimate solution can be readily obtained by the same
iterative process.

Obviously, the above VIM solutions are expressed in series form. Comparisons of
the second, third and forth-order VIM solutions (ya,ys and ys) with the exact solution
are shown in Figure 1. We see that the VIM solutions error may enlarge with increase
of x. So, we present a modification in VIM (using Padé approximation) to improve
the error.

Exact
..... y2
1
Ly
)
—_

FIGURE 1. Comparison of the second, third and forth-order approximate so-
lutions using VIM and the exact solution for example 3.1.

Now, we find the Padé approximations of the VIM solutions. For example, The
[2,2] and [6,6] Padé approxzimations of ya2(x), respectively are

14 12
P[2.2 z)) = —4"
2275,.2 |, 33,4 _ 281 6
P16, 6)(ya() = it HOT s
) 3307 17309 2633 6"
1+ 556127 + 5g520%” + 506402°

As the same way, we compute the [j,j] Padé approximations of ys(x) and y4(x).
The second, third and forth-order VIM solutions and effective approximate solutions
using present technique compared with the exact solution in Figure 2. From these
figures, we can see that the proposed method solutions are in excellent agreement with
the exact solutions. Moreover, the Ly and RM S errors of y,(x), (n=2,3,4) for this
example are listed in Table 1 to compare the accuracy of VIM and various VIM- Padé
strategies.

Example 3.2. Consider the following nonlinear Riccati equation [36] with the indi-
cated initial condition:
Y (z) =1+2% —y*(x), y(0)=1. (3.5)
a0
BEE
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TABLE 1. The L2 and RMSE errors for y,(x),n = 2, 3, 4 for Example 3.1 with
VIM and VIM- Padé (p[j, j]) technique.

Lo Error RMSE Error

n| VIM VIM-Padé VIM VIM-Padé
p[2,2] | 0.1508 P22 | 0.075]
p[3,3] | 0.1508 pl3.3] | 0.0754
2| 1522.3037 | pld,4] | 0.5343| 766.9860 | pl4,4] | 0.2672
pl5,5] | 0.5343 pl5.5] | 0.2672
p[6,6] | 0.2387 pl6,6] | 0.1195
p?, 2} 0.1508 p?, 2} 0.075]
pl3.3] | 0.1508 p[3.3] | 0.0754
3| 2.423 x 105 g %’Zﬂ g‘f?% 9.3645 x 1014 5%’ g} é'gigg
p[24,24] | 0.1014 p[24,24] | 0.0507
p[28,28] | 0.0955 p[28,28] | 0.0477
p2.2] | 0.1508 p2.2] | 0.075]
/| 6.036 x 107 g%’g g'gjgg 2.4319 x 107 ﬁ‘é’g g'géff
[20,20] | 0.0070 p[20,20] | 0.005

(a) (b)

FIGURE 2. Comparison of the second (A) and third (B) approximate
solutions the approximate solutions using VIM and VIM-Padé with
the exact solution for example 3.1.

The exact solution of (3.5) is given by
2
e—flf

)=+ ——m 5 ;-

y(@) 14 [y e Pdt

(&)
EE
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FIGURE 3. Comparison of the second, third and forth-order approximate
solutions using VIM and the exact solution for example 3.2.

According to variational iteration method (VIM); we derive a correct functional as
follows

Ynar(2) = u(z) + / AMOWLE) 26 — 1 — e, (3.6)

where the Lagranges multiplier \(§) is easily identified to be A = —1. Therefore, we
have the following variational iteration formula

1) = al) = [ € + 2O — 1~ € (37)
0
Choosing yo(z) = 1, the above iteration formula yields the following approzimate
solutions:

1
yi(x) =14 gw?’,

2 2 1
yo(w) = 1+ =% — Za* — —a7,

3 3 9
3 1,45 L 15 (3.8)
ys(x) =142 — 2z —|—§x —|—...—gx )

Now, the accuracy of VIM solution are improved by Padé technique. A few itera-
tions of VIM and Padé can be applied for this problem with a high degree of accuracy.
The graphs of second, third and forth-order approximate solutions by VIM and the
ezxact solution are given in Fig.3. Comparing the VIM solutions with effective approz-
imate solutions obtained by present technique are shown in Fig.4. Table 2 shows the
results of computing the Lo and RMSE errors of approzimate y,(x),n = 2,3,4 for
example 3.2 with VIM and various VIM- Padé strategies. In this table, similar to the

(e
BE
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== Pade[6,€ly3

== Pade[5,5]y4

F1GURE 4. Comparison of the second (A), third (B) and forth-order
(C) approximate solutions using VIM and VIM-Padé technique with
the exact solution for example 3.2.

results of the table 1, we can observe that VIM- Padé strategy with regards to VIM
one is more efficient.

2D
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TABLE 2. The Ls and RMSE errors for y,(x),n = 2, 3, 4 for Example 3.2 with

VIM and VIM- Padé (p[j, j]) technique.

757

Lo Error RMSE Error
n VIM VIM-Padé VIM VIM-Padé
p[2,2] | 3.0106 p[2, 2] 1.5065
p[3,3] | 2.3562 p[3, 3] 1.1793
2| 1023.0619 pl4,4] | 39.6056 |  514.0983 pl4,4] | 106.5590
p[5,5] | 6.5045 |5, 5] 3.2552
p[6,6] | 16.3156 p[6, 6] 8.1579
p[2,2] | 3.0106 p[2, 2] 1.5065
p[3,3] | 2.6253 p[3, 3] 1.3139
pl4,4] | 3.1206 pl4, 4] 1.5616
3| 55411 x 105 | p[5,5] | 32.8994 | 2.7907 x 10° | p[5,5] 1.9503
p[6,6] | 1.5475 p[6, 6] 0.7736
p[7,7] | 11.159 p[7,7] | 25.1438
p2,2] | 3.0106 p[2,2] 1.5065
p[3,3] | 2.7307 p[3, 3] 1.3665
pl4,4] | 2.7610 pl4, 4] 1.3817
p[5,5] | 0.5310 P[5, 5] 0.2661
4| 2.4664 x 10'* | p[6, 6] 1.8717 | 1.2027 x 10'* | pl[6, 6] 0.9870
p[7,7] | 1.8951 p|7,7] 0.6985
p[8,8] | 3.2060 p[8, 8] 1.6042
p[9,9] | 21.6977 p[9,9] | 22.6751
p[10,10] | 52.7127 p[10,10] | 137.5276

/
3 //
'/
2 ==
i
////' i
: 4
P =
e N
s
-

FIGURE 5. Comparison of the approximate solutions using VIM with the

exact solution for Example 3.3.
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Example 3.3. Consider the second-order neutral functional-differential equation with
proportional delay,

y'(@) = Sy(@) +u(3) +o/(5)

1
5 5 —|—fy”(£ —22—z+1, O<z<l,
y(0) = y'(0) = 0.

V' 5) (3.9)

Here, the Lagrange multiplier is found to be A = s —t ( [18]). Therefore, by using
the variational iteration method (VIM), the corresponding iteration formula assumes
the form

@) = (o) + [ (5= )y (@) = o)~ 5~/ ()

1 (3.10)
z 2
- iy”(§) + 2 +z — 1]ds.
TABLE 3. The Ly and RMSE errors for yn (z),n = 2, 3, 4 for Example 3.3 with
VIM and VIM-Padé (p[2,2]) technique.
Lo Error RMSE Error
n 2 3 4 2 3 4
VIM 30.9054 | 22.7472 | 13.8000 | 15.4985 | 11.4122 | 6.9251
VIM-Padé || 10.4108 | 7.4326 | 4.7120 5.2136 | 3.7230 | 2.3608

Assuming yo(x) = 0 as an initial approzimation that satisfies the initial conditions,
from the above iteration formula (3.10), we obtain the following successive approxi-
mations

_ 1 3 2
n(@) =—@ =57 57
13 g 3 o 1., 1, 3,
1(®) = 5™ T 30" T 6% 8% T (3.11)
| B N R I :
Y\ = " 5919120" T 921607 1843200 5120 192
I S
96" 87

Now, we apply Padé approximation to improve the accuracy of the VIM solution. A
few approximations of VIM iterations and Padé can be used for this problem with a
high degree of accuracy. The comparison some of these approximate solutions with
the exact solution y(x) = x? is shown in Fig.5. In Fig.6 the comparison of these
approzimations and VIM- Padé technique solutions for them with the exact solution
are shown. Fig.6 and Table 3 show that a low number of VIM iterations and Padé
approzimation (p[2,2]) can yield better solutions than VIM.

(&)
EE
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4 4
31 3
34 Exact 24 , o Exact
——y2 _"',‘ _'_y3
BoH [P P[2,2]y2 R PR PI2,2v3
e
"‘ v'.‘/
1 £ 1 e
L~ o
‘// AN e
- ol
e &
5 .
0 0.3 1 15 2 0 0.3 1 175 2
X x
4 4
i
3 3 v
e -
4 7
7 7
2 y Exact 2 : Exact
A 4 E—_
A RS PI2,21v4 oo PI2,21y5
/4 /
1 / 1
0 05 1 15 2 0 05 1 15 2
X X

FIGURE 6. Comparison of the approximate solutions using VIM and
VIM-Padé [2, 2] with the exact solution for Example 3.3.

4. CONCLUSION

In this study, a combination of the VIM and the Padé approximation method,
called the VIM-Padé technique, was effectively applied to find the approximate solu-
tion of two nonlinear differential equations and a functional-differential equation with
proportional delay. In VIM the domain of convergence of the obtained truncated
series solution is limited and we successfully used Padé technique with the VIM to in-
crease the convergence region. We can conclude that the results obtained reveal that
applying the VIM-Padé approximation method gives better results in comparison to
the VIM.
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