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1. Introduction

Interval analysis was formally introduced by Moore in the 1960’s, see [9, 10]. It
provides a natural framework for self-verified numerical computing with its ability to
correctly and automatically account for errors from many sources, including rounding
errors due to limited precision of the floating point representation of real numbers,
approximation errors due to algebraic manipulation of formulas, and measurement
error in the initial data. A real interval is of the form x = [x, x], where x and x
are the lower and upper bounds of the interval number x, respectively. The set of
compact real intervals is denoted by

IR = {x = [x, x] | x, x ∈ R, x ≤ x}.

In this Section, we review some of the fundamental definitions and properties of inter-
val analysis that will be used throughout this paper. For a more in-depth discussion
of topics related to interval analysis, see [1, 7, 8, 11, 12].

The width, radius, mid-point, and absolute value of an interval x = [x, x] are
defined by w(x) = x−x, rad(x) = 1

2 (x−x), m(x) = 1
2 (x+x) and |x| = max{|x|, |x|},

respectively. Let x = [x, x] and y = [y, y] be two intervals. Moore [10] defined the
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interval arithmetic as follows:

x + y = [x+ y, x+ y],
x− y = [x− y, x− y],
x× y = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}],
x/y = [x, x]× [1/y, 1/y] if 0 /∈ y.

Note that subtraction and division are not the inverse operations of addition and
multiplication, respectively.

Definition 1.1. We say that f is an interval extension of f on the interval x = [x, x],
if

f([x, x]) = f(x), (restriction),
f(x) ⊇ {f(x) |x ∈ x}, (inclusion).

Definition 1.2. An interval extension f is said to be Lipschitz in x(0) if there is a
constant L such that rad(f(x)) ≤ Lrad(x) for every x ⊆ x(0).

Lemma 1.3 (see [11]). If f is a natural interval extension of a real rational function
with f(x) defined for x ⊆ x(0), where x and x(0) are intervals or n-dimensional interval
vectors, then f is Lipschitz in x(0).

Definition 1.4. An interval valued function f is inclusion monotonic if x ⊆ y implies
f(x) ⊆ f(y).

Definition 1.5. An interval sequence {x(k)} is nested if x(k+1) ⊆ x(k) for all k.

Lemma 1.6 (see [11]). For any real numbers a and b and any intervals x and y, we
have the following relations:

w(ax + by) = |a|w(x) + |b|w(y),
w(xy) ≤ |x|w(y) + |y|w(x),
w(1/y) ≤ |1/y|2w(y) if 0 /∈ y.

2. Background and methodology

2.1. Interval Newton method. Newton’s method is the well-known iterative method
for finding a simple zero of function. To obtain the root enclosures of a real-valued
function f of a real variable x, an interval version of Newton method [11] is well-known
as follows:

x(k+1) =

{
m(x(k))− f(m(x(k)))

f ′(x(k))

}
∩ x(k), k = 0, 1, 2, . . . , (2.1)

where f ′(x(k)) is an inclusion monotonic interval extension of f ′(x) for all x ∈ x(k),
and 0 /∈ f ′(x(k)). The interval Newton method has the following properties:

(i) If
{
m(x(k))− f(m(x(k)))/f ′(x(k))

}
∩x(k) = ∅, then x(k) does not contain any

zero of f .
(ii) If x∗ ∈ x(0) and

{
m(x(k))− f(m(x(k)))/f ′(x(k))

}
⊆ x(k), then x(k) contains

exactly one zero of f .



224 T. EFTEKHARI

Theorem 2.1 (see [11]). Given a real rational function f of a single real variable x
with rational extensions f, f ′ of f, f ′, respectively, such that f has a simple zero x∗

in an interval x(0) for which f(x(0)) is defined and f ′(x(0)) is defined and does not
contain zero i.e. 0 /∈ f ′(x(0)), then there is a positive real number C such that

rad(x(k+1)) ≤ C rad(x(k))2. (2.2)

Based on the interval extension of the Newton method, some interval methods
have been produced for computing the enclosure solutions of nonlinear equations in
[2–4, 14].

2.2. Halley method. The Halley method is an important method for finding a sim-
ple root of a nonlinear equation and is given by

xn+1 = xn −
f(xn)f ′(xn)

(f ′(xn))
2 − 1

2
f(xn)f ′′(xn)

.

This method was first considered by the astronomer Halley [6] and is an improvement
of the Newton method with the order of convergence equal to 3.

2.3. Modified Halley method. The modified Halley method [13] is given by
yn = xn −

f(xn)

f ′(xn)
,

xn+1 = yn −
2f(xn)f(yn)f ′(yn)

2f(xn)(f ′(yn))
2 − (f ′(xn))

2
f(yn) + f ′(xn)f ′(yn)f(yn)

.

Order of convergence of this method is equal to 5.

3. Main results

In this section two new interval methods,interval extensions of the Halley method
and its modified method, are produced for computing enclosures of roots of nonlinear
equations. Note that we use the symbol O in Theorems 3.2, 3.4 according to the
following convention [16]: If f

g → C, where C is a nonzero constant, we write f = O(g)

or f ∼ Cg.

3.1. Interval extension of the Halley method. Let x∗ ∈ x(0) = [x
(0)
1 , x

(0)
2 ] be a

simple root of f ∈ C2(x(0)) and f ′(x), f ′′(x) 6= 0 for all x ∈ x(0). By considering the
first order Taylor series expansion of f(x∗) around the point x, we have

0 = f(x∗) = f(x) + (x∗ − x)f ′(ξ),

for some ξ between x and x∗. Since f(x∗) = 0 and f ′(ξ) 6= 0, we obtain

x∗ = x− f(x)

f ′(ξ)
. (3.1)

Now we write the second order Taylor series expansion of f(x∗) around the point x
as follows:

0 = f(x∗) = f(x) + (x∗ − x)f ′(x) +
(x∗ − x)

2

2
f ′′(η),
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for some η between x and x∗. Therefore

0 = f(x) + (x∗ − x)

(
f ′(x) +

(x∗ − x)

2
f ′′(η)

)
. (3.2)

From (3.1) and (3.2), we obtain

0 = f(x) + (x∗ − x)

(
f ′(x)− f(x)

2f ′(ξ)
f ′′(η)

)
,

hence

x∗ = x− f(x)f ′(ξ)

f ′(ξ)f ′(x)− 1

2
f(x)f ′′(η)

.

If f ′(x(0)) denotes the interval extension of f ′(ξ), f ′(x) and f ′′(x(0)) denotes the in-
terval extension of f ′′(η), then

x∗ ∈ x− f(x)f ′(x(0))

(f ′(x(0)))
2 − 1

2
f(x)f ′′(x(0))

,

for any x ∈ x(0), in particular for x = m(x(0)) = (x
(0)
1 + x

(0)
2 )/2. Hence

x∗ ∈ m(x(0))− f(m(x(0)))f ′(x(0))

(f ′(x(0)))
2 − 1

2
f(m(x(0)))f ′′(x(0))

.

Let

H(x(0)) = m(x(0))− f(m(x(0)))f ′(x(0))

(f ′(x(0)))
2 − 1

2
f(m(x(0)))f ′′(x(0))

,

therefore, x∗ ∈ H(x(0)). Since x∗ ∈ x(0), it is clear that x∗ ∈ H(x(0)) ∩ x(0). Define
x(1) = H(x(0)) ∩ x(0). By continuing this process, we build the sequence

x(k+1) = H(x(k)) ∩ x(k), (3.3)

where

H(x(k)) = m(x(k))− f(m(x(k)))f ′(x(k))

(f ′(x(k)))
2 − 1

2
f(m(x(k)))f ′′(x(k))

.

Thus, an interval extension of the Halley method is produced.

Theorem 3.1. Let f ∈ C2(x(0)) and suppose that

0 /∈ f ′(x(k)),

{
(f ′(x(k)))

2
− 1

2
f(m(x(k)))f ′′(x(k))

}
, k = 0, 1, 2, . . . .

If an interval x(0) contains a root x∗ of f, then so do intervals x(k), k = 1, 2, . . ..
Besides, the nested interval sequence {x(k)} of the form (3.3) converges to x∗.
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Proof. By induction, if x∗ ∈ x(0), then x∗ ∈ x(k) for k = 1, 2, . . .. Also, if there is a k
such that x∗ = m(x(k)), then we have w(x(k+1)) = 0, and, therefore, the convergence
is proved. Now let x∗ 6= m(x(k)) for k = 0, 1, 2, . . .. Since

0 /∈ f ′(x(k)),

{
(f ′(x(k)))

2
− 1

2
f(m(x(k)))f ′′(x(k))

}
, k = 0, 1, 2, . . . ,

then

f(m(x(k)))f ′(x(k))

(f ′(x(k)))
2 − 1

2
f(m(x(k)))f ′′(x(k))

,

consists entirely of elements of the same sign. Thus, the midpoint of x(k) is not
contained in x(k+1) (see Figure 1).

Figure 1. Geometric interpretation of interval Halley method.

Therefore, w(x(k+1)) < 1
2w(x(k)) and the convergence is proved. �

Theorem 3.2. Let f ∈ C2(x(0)) and suppose that

0 /∈ f ′(x(k)),

{
(f ′(x(k)))

2
− 1

2
f(m(x(k)))f ′′(x(k))

}
, k = 0, 1, 2, . . . .

(i) If H(x(k)) ∩ x(k) = ∅ for k = 0, 1, 2, . . . , then x(k) contains no roots of f .
(ii) If H(x(k)) ⊂ x(k), then x(k) contains exactly one root of f .

In this case,

rad(x(k+1)) = O
(

(rad(x(k)))
2
)
. (3.4)
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Proof. (i) Suppose that x(0) contains a root x∗ of f , then Theorem 3.1 results in
x∗ ∈ H(x(k)) and x∗ ∈ H(x(k))∩x(k). Therefore, if H(x(k))∩x(k) = ∅, it follows that
x(0) cannot contain a root of f .
(ii) Since 0 /∈ f ′(x(k)), then f ′(x) 6= 0 for all x ∈ x(k) and f is monotonic on x(k).
Therefore, since f is continuous on x(0), there can be at most one root in x(0). In
other words, it has at most one zero in x(k). Hence, it is sufficient to find a zero
x∗ ∈ x(k). By using the Theorem 3.1 , it is clear that f has exactly one root in x(k).
To prove (3.4), we consider the Mean Value Theorem as follows:

f(m(x(k))) = f ′(δ)(m(x(k))− x∗), (3.5)

where δ is between m(x(k)) and x∗. Since H(x(k)) ⊂ x(k), from the formulas (3.3) and
(3.5), we get

x(k+1) = m(x(k))− λ(m(x(k))− x∗)f ′(δ),
where

λ =
f ′(x(k))

(f ′(x(k)))
2 − 1

2
f(m(x(k)))f ′′(x(k))

.

Therefore

rad(x(k+1)) = rad(λ) |m(x(k))− x∗||f ′(δ)|. (3.6)

Since w(x) = 2 rad(x),∀x ∈ IR, using Lemma 1.6, we obtain

rad(λ) =
1

|(f ′(x(k)))2 − 1
2f(m(x(k)))f ′′(x(k))|

rad(f ′(x(k)))

+ |f ′(x(k))|rad

 1

(f ′(x(k)))
2 − 1

2
f(m(x(k)))f ′′(x(k))

 . (3.7)

Also, from Lemma 1.3, we see that

rad
(
f ′(x(k))

)
≤ L1rad(x(k)), (3.8)

rad
(
f ′′(x(k))

)
≤ L2rad(x(k)). (3.9)

Let

|(f ′(x(k)))
2
− 1

2
f(m(x(k)))f ′′(x(k))| ≥ K1, (3.10)

|f ′(x(k))| ≤ K2, (3.11)

|f ′(δ)| ≤ K3. (3.12)

It is clear that

|m(x(k))− x∗| ≤ rad(x(k)). (3.13)
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By using Lemma 1.6 and from (3.5), (3.8)-(3.13), we get

rad

(
1

(f ′(x(k)))
2 − 1

2f(m(x(k)))f ′′(x(k))

)

≤
rad

(
(f ′(x(k)))

2 − 1
2f(m(x(k)))f ′′(x(k))

)
∣∣∣(f ′(x(k)))2 − 1

2f(m(x(k)))f ′′(x(k))
∣∣∣2

≤ 1

K2
1

(
rad

(
(f ′(x(k)))

2
)

+
1

2
|f(m(x(k)))|rad

(
f ′′(x(k))

))
≤ 1

K2
1

(
2|f ′(x(k))|rad

(
f ′(x(k))

)
+

1

2
|f ′(δ)||m(x(k))− x∗|rad

(
f ′′(x(k))

))
≤ 1

K2
1

(
2K2L1rad(x(k)) +

K3L2

2
(rad(x(k)))

2
)

=
1

K2
1

(
2K2L1 +

K3L2

2
rad(x(k))

)
rad(x(k)). (3.14)

Therefore, from (3.7), (3.8), (3.10), (3.11) and (3.14), we clearly have

rad(λ) ≤ L1

K1
rad(x(k)) +

K2

K2
1

(
2K2L1 +

K3L2

2
rad(x(k))

)
rad(x(k))

=

(
L1

K1
+
K2

K2
1

(
2K2L1 +

K3L2

2
rad(x(k))

))
rad(x(k)). (3.15)

Now, applying (3.12), (3.13), and (3.15) in formula (3.6) gives (3.4). �

3.2. Interval extension of the modified Halley method. Let y(0) = [y
(0)
1 , y

(0)
2 ]

be an interval and x∗ ∈ y(0) ⊆ x(0). From (2.1), we have

y(0) =

{
m(x(0))− f(m(x(0)))

f ′(x(0))

}
∩ x(0). (3.16)

By writing the first order Taylor series expansion of f(y) around the point x∗, we
have

f(y) = f(x∗) + (y − x∗)f ′(β),

for any y ∈ y(0) and for some β between y and x∗. Since f(x∗) = 0 and f ′(β) 6= 0,
we get

x∗ = y − f(y)

f ′(β)
. (3.17)

Now by considering the second order Taylor series expansion of f(x∗) around the
point y, we have

0 = f(x∗) = f(y) + (x∗ − y)f ′(y) +
(x∗ − y)

2

2
f ′′(y),
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for any y ∈ y(0). Therefore

0 = f(y) + (x∗ − y)

(
f ′(y) +

(x∗ − y)

2
f ′′(y)

)
. (3.18)

By substituting (3.17) into (3.18), we get

0 = f(y) + (x∗ − y)

(
f ′(y) +

(x∗ − y)

2
f ′′(y)

)
= f(y) + (x∗ − y)

(
f ′(y)− f(y)

2f ′(β)
f ′′(y)

)
= f(y) + (x∗ − y)

(
2f ′(y)f ′(β)− f(y)f ′′(y)

2f ′(β)

)
,

thus

x∗ = y − 2f(y)f ′(β)

2f ′(y)f ′(β)− f(y)f ′′(y)
. (3.19)

Now, we write the first order Taylor series expansion of f ′(x) around the point y:

f ′(x) = f ′(y) + (x− y)f ′′(y), (3.20)

for any x ∈ x(0). Since x∗ and y are arbitrary, we can assume that the two values
are sufficiently close together. Thus, using (3.1) and substituting x− y ≈ x− x∗ into
(3.20) give us

f ′′(y) =
f ′(x)− f ′(y)

x− y
≈ f ′(x)− f ′(y)

x− x∗
=

(f ′(x)− f ′(y)) f ′(ξ)

f(x)
. (3.21)

By substituting (3.21) into (3.19), we obtain

x∗ ≈ y − 2f(x)f(y)f ′(β)

2f(x)f ′(y)f ′(β)− f ′(x)f ′(ξ)f(y) + f ′(ξ)f ′(y)f(y)
.

If f ′(x(0)) denotes the interval extension of f ′(ξ), f ′(x) and f ′(y(0)) denotes the in-
terval extension of f ′(y), f ′(β), then

x∗ ∈ y − 2f(x)f(y)f ′(y(0))

2f(x)(f ′(y(0)))
2 − (f ′(x(0)))2f(y) + f ′(x(0))f ′(y(0))f(y)

,

for any x ∈ x(0) and y ∈ y(0), in particular for x = m(x(0)) = (x
(0)
1 + x

(0)
2 )/2 and

y = m(y(0)) = (y
(0)
1 + y

(0)
2 )/2. Therefore

x∗ ∈ m(y(0))−2f(m(x(0)))f(m(y(0)))f ′(y(0))/
(

2f(m(x(0)))(f ′(y(0)))
2

−(f ′(x(0)))
2
f(m(y(0))) + f ′(x(0))f ′(y(0))f(m(y(0)))

)
.
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Let

M(x(0),y(0)) = m(y(0))−
(

2f(m(x(0)))f(m(y(0)))f ′(y(0))

/
(

2f(m(x(0)))(f ′(y(0)))
2
− (f ′(x(0)))

2
f(m(y(0)))

+f ′(x(0))f ′(y(0))f(m(y(0)))
))

,

therefore, x∗ ∈M(x(0),y(0)). Since x∗ ∈ y(0), it is clear that x∗ ∈M(x(0),y(0))∩y(0).
Define

x(1) = M(x(0),y(0)) ∩ y(0). (3.22)

From (3.16) and (3.22), we obtain

y(0) =

{
m(x(0))− f(m(x(0)))

f ′(x(0))

}
∩ x(0),

M(x(0),y(0)) = m(y(0))−
(
2f(m(x(0)))f(m(y(0)))f ′(y(0))

/
(

2f(m(x(0)))(f ′(y(0)))
2 − (f ′(x(0)))

2
f(m(y(0)))

+f ′(x(0))f ′(y(0))f(m(y(0)))
))
,

x(1) = M(x(0),y(0)) ∩ y(0).

Now by continuing this process, we see that

y(k) =

{
m(x(k))− f(m(x(k)))

f ′(x(k))

}
∩ x(k),

M(x(k),y(k)) = m(y(k))−
(
2f(m(x(k)))f(m(y(k)))f ′(y(k))

/
(

2f(m(x(k)))(f ′(y(k)))
2 − (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
))
,

x(k+1) = M(x(k),y(k)) ∩ y(k).

(3.23)

Thus, an interval extension of the modified Halley method for computing the enclosure
solutions of nonlinear equations is produced.

Theorem 3.3. Let f ∈ C(x(0)) and suppose

0 /∈ f ′(x(k)),
{

2f(m(x(k)))(f ′(y(k)))
2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
}
, k = 0, 1, 2, . . . .

If an interval x(0) contains a root x∗ of f, then so do intervals x(k), k = 1, 2, . . . .
Besides, the nested interval sequence {x(k)} of the form (3.23) converges to x∗.

Proof. The proof of this theorem is similar to the proof of Theorem 3.1. Hence, it is
omitted. �
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Theorem 3.4. Let f ∈ C(x(0)) and suppose that

0 /∈ f ′(x(k)),
{

2f(m(x(k)))(f ′(y(k)))
2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
}
, k = 0, 1, 2, . . . .

Then the following statements hold:

(i) If M(x(k),y(k)) ∩ y(k) = ∅ for k = 0, 1, 2, . . . , then x(k) contains no roots of
f .

(ii) If M(x(k),y(k)) ⊂ y(k), then x(k) contains exactly one root of f .
In this case,

rad(x(k+1)) = O
(

(rad(x(k)))
5
)
. (3.24)

Proof. The proof of (i) and (ii) for the nested interval sequence of the form (3.23)
is entirely analogous to the proof of Theorem 3.2. We show only (3.24). Using the
Mean Value Theorem gives

f(m(y(k))) = f ′(σ)(m(y(k))− x∗), (3.25)

where σ is between m(y(k)) and x∗. Since M(x(k),y(k)) ⊂ x(k), from (3.5), (3.23), and
(3.25), we get

x(k+1) = m(y(k))− γ(m(x(k))− x∗)f ′(δ)(m(y(k))− x∗)f ′(σ),

where

γ = 2f ′(y(k))/
(

2f(m(x(k)))(f ′(y(k)))
2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
)
.

Therefore

rad(x(k+1)) = rad(γ) |m(x(k))− x∗||f ′(δ)| |m(y(k))− x∗||f ′(σ)|. (3.26)

Since w(x) = 2 rad(x),∀x ∈ IR, using Lemma 1.6, we obtain

rad(γ) = 2rad
(
f ′(y(k))

)
/
∣∣∣2f(m(x(k)))(f ′(y(k)))2

−(f ′(x(k)))2f(m(y(k))) + f ′(x(k))f ′(y(k))f(m(y(k)))
∣∣∣

+ 2|f ′(y(k))|rad
(

1/
(

2f(m(x(k)))(f ′(y(k)))
2

−(f ′(x(k)))
2
f(m(y(k))) + f ′(x(k))f ′(y(k))f(m(y(k)))

))
. (3.27)

Also, from Lemma 1.3, we have

rad
(
f ′(y(k))

)
≤ L3rad(y(k)). (3.28)

Let ∣∣∣2f(m(x(k)))(f ′(y(k)))
2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
∣∣∣ ≥ K4, (3.29)
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|f ′(σ)| ≤ K5, (3.30)

|f ′(y(k))| ≤ K6. (3.31)

It is clear that

|m(y(k))− x∗| ≤ rad(y(k)). (3.32)

Using Lemma 1.6 and from (2.2), (3.5), (3.8), (3.11)-(3.13), (3.25), (3.28)-(3.32), we
get

rad (1 /
(

2f(m(x(k)))(f ′(y(k)))
2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
))

≤ 1/
∣∣∣2f(m(x(k)))(f ′(y(k)))

2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
∣∣∣2

× rad
(

2f(m(x(k)))(f ′(y(k)))
2
− (f ′(x(k)))

2
f(m(y(k)))

+f ′(x(k))f ′(y(k))f(m(y(k)))
)

≤ 1

K2
4

(
2|f(m(x(k)))|rad

(
(f ′(y(k)))

2
)

+ |f(m(y(k)))|rad
(

(f ′(x(k)))
2
)

+|f(m(y(k)))|rad(f ′(x(k))f ′(y(k)))
)

≤ 1

K2
4

(
4|m(x(k))− x∗||f ′(δ)||f ′(y(k))|rad(f ′(y(k)))

+ 2|m(y(k))− x∗||f ′(σ)||f ′(x(k))|rad(f ′(x(k)))

+ |m(y(k))− x∗||f ′(σ)|
(
|f ′(x(k))|rad(f ′(y(k)))

+|f ′(y(k))|rad(f ′(x(k)))
))

≤ 1

K2
4

(
4rad(x(k))K3K6L3rad(y(k)) + 2rad(y(k))K5K2L1rad(x(k))

+rad(y(k))K5(K2L3rad(y(k)) +K6L1rad(x(k)))
)

≤ 1

K2
4

(
4K3K6L3C (rad(x(k)))

3
+ 2K5K2L1C (rad(x(k)))

3

+C (rad(x(k)))
2
K5

(
K2L3C(rad(x(k)))

2
+K6L1rad(x(k))

))
=

1

K2
4

(4K3K6L3C + 2K5K2L1C

+CK5

(
K2L3C rad(x(k)) +K6L1

))
(rad(x(k)))3. (3.33)
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Therefore, from (2.2), (3.27)-(3.29), (3.31), (3.33), we clearly have

rad(γ) ≤ 2L3

K4
rad(y(k)) +

2K6

K2
4

(4K3K6L3C + 2K5K2L1C

+CK5

(
K2L3Crad(x(k)) +K6L1

))
(rad(x(k)))3

≤ 2L3

K4
C(rad(x(k)))2 +

2K6

K2
4

(4K3K6L3C + 2K5K2L1C

+CK5

(
K2L3Crad(x(k)) +K6L1

))
(rad(x(k)))3

=

(
2L3

K4
C +

2K6

K2
4

(4K3K6L3C + 2K5K2L1C

+CK5

(
K2L3Crad(x(k)) +K6L1

))
rad(x(k))

)
(rad(x(k)))2. (3.34)

Now, applying (2.2), (3.12), (3.13), (3.30), (3.32), and (3.34) in formula (3.26) gives
(3.24). �

4. Numerical results

In this section we have compared the interval methods (3.3) and (3.23) together
with the interval Newton method (2.1), using the examples listed in Table 1.

Table 1. Tested functions and initial intervals

Example i Function fi Root x∗ Initial interval x(0) Root enclosures

1 x2 − ex − 3x+ 2 0.25753028543986079 [0, 1] [0.25753028543986, 0.25753028543987]
2 x5 + x4 + 4x2 − 15 1.3474280989683053 [1.25, 1.5] [1.34742809896830, 1.34742809896831]
3 log(x2 + x+ 2)− x+ 1 4.1525907367571583 [4, 4.25] [4.15259073675715, 4.15259073675716]
4 (x− 5)2 − ex 2.1173913386948322 [2, 2.25] [2.11739133869483, 2.11739133869484]
5 cosx+ x− x2 + x5 −0.5333964635678204 [−0.6,−0.45] [−0.53339646356783,−0.53339646356782]
6 ex − sin3 x −3.4623979938206757 [−3.5,−3.25] [−3.46239799382068,−3.46239799382067]
7 e−x + cosx 1.746139530408012285 [1.5, 2] [1.74613953040801, 1.74613953040802]
8 (x+ 2)ex − 1 −0.44285440100238854 [−0.5, 0] [−0.44285440100239,−0.44285440100238]
9 cosx− x 0.73908513321516067 [0.5, 1] [0.73908513321516, 0.73908513321517]
10 x5 − 10 1.5848931924611134 [1, 1.75] [1.58489319246111, 1.58489319246112]

11 x3 + sin
(

x√
3

)
− 1

4 0.3568342187225045 [0.3, 0.4] [0.35683421872250, 0.35683421872251]

12 (x− 1)e−2x + x3 0.5391809932576055 [0.5, 0.6] [0.53918099325760, 0.53918099325761]
13 x2 sinx+ ex cos x sin x + 4x3 − 15 1.4322415985999165 [1.4, 1.5] [1.43224159859991, 1.43224159859992]

14 xex
2−1 + cosx+ log(x2 + x+ 2) −1.0634448437881119 [−1.2,−1] [−1.06344484378812,−1.06344484378811]

15 sin2(x2 + 1)−
√
x+1
3 1.1684762578039694 [1, 1.2] [1.16847625780396, 1.16847625780397]

All examples in this section are tested on an Intel(R) Core(TM) i5-2450M CPU @
2.50GHz Processor with 4 GB of RAM using Matlab R2015a and version 8 of INTLAB
[15] on Windows 7 (64 bit) operating system. The results of comparisons are displayed
in Table 2, where “IT” shows the number of iterations.
According to Table 2, the number of iterations reveals that the interval extension
of the modified Halley method (3.23) requires a few numbers of iterations to obtain
enclosure of roots of nonlinear equations in the contrast to the other methods. In
fact, the interval extension of the modified Halley method (3.23) is better than the
interval extension of the Halley method (3.3) and the interval Newton method (2.1).



234 T. EFTEKHARI

Table 2. Comparison of results for the interval methods

(2.1) (3.3) (3.23)

f1(x), x
(0) = [0, 1]

IT 5 5 3

f2(x), x
(0) = [1.25, 1.5]

IT 4 5 2

f3(x), x
(0) = [4, 4.25]

IT 5 4 2

f4(x), x
(0) = [2, 2.25]

IT 3 4 2

f5(x), x
(0) = [−0.6,−0.45]

IT 4 4 2

f6(x), x
(0) = [−3.5,−3.25]

IT 5 6 3

f7(x), x
(0) = [1.5, 2]

IT 3 3 2

f8(x), x
(0) = [−0.5, 0]

IT 4 5 3

f9(x), x
(0) = [0.5, 1]

IT 4 4 2

f10(x), x
(0) = [1, 1.75]

IT 5 6 3

f11(x), x
(0) = [0.3, 0.4]

IT 3 4 2

f12(x), x
(0) = [0.5, 0.6]

IT 4 4 2

f13(x), x
(0) = [1.4, 1.5]

IT 3 4 2

f14(x), x
(0) = [−1.2,−1]

IT 4 5 2

f15(x), x
(0) = [1, 1.2]

IT 5 6 3

5. Conclusion

In this paper, interval extensions of the Halley method and its modified method
which calculate enclosures of roots of given nonlinear equations were produced. Also,
error bound and convergence rate were studied. These algorithms were tested using
some examples via INTLAB. Numerical results show that the interval modified Halley
method is better than the interval Halley method and interval Newton method.
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