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Abstract In this paper, we concern ourselves with the study of a class of stationary states

for reaction-diffusion systems with densities having disjoint supports. Major contri-

bution of this work is computing the numerical solution of problem as the rate of
interaction between two different species tend to infinity. The main difficulty is the

nonlinearity nature of problem. To do so, an efficient iterative method is proposed

by hybrid of the radial basis function (RBF) collocation and finite difference (FD)
methods to approximate the solution. Numerical results with good accuracies are

achieved where the shape parameter is carefully selected. Finally, some numerical

examples are given to illustrate the good performance of the method.
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1. Introduction

In recent years the spatial segregation for reaction-diffusion systems has been
widely studied in the literature, see [4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19]. An
interesting problem is the existence of spatially inhomogeneous solutions for competi-
tion models of Lotka-Volterra type, see [17, 23, 24]. Understanding of the interaction
between different species has developed as a central problem in the study of popula-
tion ecology. The presence of strong interactions of competitive type produces, to the
limit, the spatial segregation of the densities. In other words, in the limiting configu-
rations all the populations survive, but have disjoint support, we refer the reader to
[21, 22, 25]. In the limiting configuration as the competition rate tends to infinity, led
to a free boundary problem (FBP). An FBP is a partial differential equation that in
which some part of the boundary is not known, but is to be determined so that some
extra boundary condition is satisfied. The segment of the boundary of domain which
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is not known at the outset of the problem is called the free boundary. Then, both the
free boundary and the solution of the differential equation should be determined.
The aim of this work is to present an iterative method for approximating the nu-
merical solution of following two problems. But here the proposed method is lack of
convergence results.

Let Ω be a connected and bounded-open subset of Rn, n ≥ 1 with smooth bound-
ary ∂Ω and let r be a fixed integer. Consider the steady states of r competing species
coexisting in the same area Ω. Here ui represents the population density of the ith
species and fi prescribe the internal dynamic of ui. Assume further that the bound-
ary data φi ∈ W 1,∞(∂Ω) are positive functions having disjoint supports, namely
φi.φj = 0, for i 6= j.
Problem I: Consider the minimization problem

Minimize E(u1, u2, . . . , ur) =

∫
Ω

r∑
i=1

(
1

2
|∇ui|2 + fiui)dx,

over the set

S = {(u1, u2, . . . , ur) ∈ (W 1,2(Ω))r : ui ≥ 0, ui.uj = 0, ui = φi on ∂Ω}.
We assume that fi is uniformly continuous and fi ≥ 0.
The special cases of Problem I are one phase obstacle problem and two phase mem-
brane problem with r = 1 and r = 2, respectively. In the following is briefly given an
introduction of these two methods.

• Two phase membrane problem (r = 2): Assume that g ∈ W 1,2(Ω) and takes
both positive and negative values over ∂Ω, and λ± : Ω → R are positive
Lipschitz-continuous functions. Consider the following functional

Minimize E(v) =

∫
Ω

[
1

2
|∇v|2 + λ+ max(v, 0)− λ−min(v, 0)]dx.

Set u1 = max(v, 0), u2 = min(v, 0), g1 = max(g, 0), g2 = min(g, 0) and
substitute them in the above functional. So we have

Minimize E(u1, u2) =

∫
Ω

(
1

2
|∇u1|2 +

1

2
|∇u2|2 + λ+u1 + λ−u2)dx, (1.1)

over the set

S = {(u1, u2) ∈ (W 1,2(Ω))2 : ui ≥ 0, u1.u2 = 0, ui = gi on ∂Ω i = 1, 2}.
Applying the Euler-Lagrange equation on the functional (1.1), one can obtain
the following equivalent FBP (see [36]){

∆u = λ+χ{u>0} − λ−χ{u<0}, in Ω;
u = g, on ∂Ω,

(1.2)

where χA denotes the characteristic function of the set A. The boundary

Γ(u) = ∂{x ∈ Ω : u(x) > 0} ∪ ∂{x ∈ Ω : u(x) < 0} ∩ Ω,
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is called the free boundary.

• One phase obstacle problem (r = 1): Consider the following functional

Minimize E(u) =

∫
Ω

(
1

2
|∇u|2 + fu)dx, (1.3)

over the set

S = {u ∈W 1,2(Ω) : u ≥ 0, u = φ on ∂Ω}.

Similar to the two phase membrane problem the Euler-Lagrange equation
corresponding to the functional (1.3) is ∆u = fχ{u>0}, in Ω;

u(x) = φ(x), on ∂Ω;
u(x) = |∇u(x)| = 0, in Ω\{u > 0}.

(1.4)

Problem II: Consider the following system of r differential equations −di∆ui(x) = −κui(x)
∑r
j 6=i ai,juj(x) + λfi(x, ui(x)), in Ω;

ui(x) ≥ 0, in Ω; i = 1, 2, . . . , r
ui(x) = φi(x), on ∂Ω,

(1.5)

where di and λ are positive numbers. The positive constants aij and κ represent the
interaction between the population ui and uj and the rate of interaction between two
species, respectively. As κ tends to the infinity, then competition-diffusion systems
shows a limiting configuration with segregated state. The limit problem turns out to
be an FBP. Without loss of generality, we condider ai,j = 1. The objective of this
work is to obtain the numerical solution of system (1.5) as κ goes to infinity. Here we
investigate the Problem II for the below cases

• fi(x, ui(x)) = 0. In this case the uniqueness of the limiting configuration is
given in [18] with r = 3 and the numerical approximation of this system is
given in [17].

• fi(x, ui(x)) = ui(1−ui). This case is a steady state of the following auxiliary
system when the boundary values are time independent
d
dt
ui − di∆ui = −κui

∑m
j 6=i ai,juj + λui(1− ui), in Ω× (0,∞);

ui(x, 0) = ui,0(x), in Ω; i = 1, 2, . . . , r
ui(x, t) = φi(x), on ∂Ω× (0,∞).

(1.6)

Therefore, FBPs have an important roles in the variety of applications. The FBPs
have been studied from different viewpoints and there are numerous papers about the
theoretical behavior and numerical solutions of the elliptic FBPs, two-phase mem-
brane problem, one-phase obstacle problem and variational inequalities, see [1, 2, 3,
9, 11, 13, 15, 20, 26, 28, 27, 29, 32, 33, 35, 38].

The major difficulty of obtaining the numerical solution of the FBPs is the nonlin-
earity nature of problem due to the unknown free surface. In this study, we propose
an efficient iterative method to compute the numerical solution of Problem I and
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Problem II. Also, this method can be applied for the FBP of the form{
∆u+ f+(u) = 0, in Ω;
u = g, on ∂Ω;

(1.7)

where,

f+(u) =

{
λ+u, if u > 0;
0 if u ≤ 0.

This method is based on combination of the finite difference and the radial basis
function collocation methods.

In the next section, we give a brief introduction on the RBF collocation method.
In the Sections 3 and 4, a new method with hybrid of the RBF collocation and
the FD methods is presented to approximate the solutions of the problems I and II,
respectively. Numerical examples are given in the Section 5 and indicated the high
accuracy of the new method. Finally some concluding remarks are presented in the
Section 6 .

2. RBF collocation method

In recent years, there has been a growing interest in research of different variant
of meshless methods. In a meshless method a set of scattered nodes are used instead
of meshing the domain of the problem. Recently, the RBFs procedure [30], is known
as a powerful tool for the scattered data interpolation problem. The use of RBFs
as a meshless method for numerical solution of partial differential equations is based
on the collocation scheme. Due to the collocation technique, this method does not
need to evaluate any integral. RBF collocation methods are interesting due to rel-
ative ease of implementation, high convergence rate and flexibility with regards to
the enforcement of arbitrary boundary conditions. The main advantage of numerical
procedures which use RBFs over traditional techniques is the meshless property of
these methods. In what follows, we introduce the RBF collocation method.

Let R be the Euclidean distance between a fixed point x̄ ∈ Rn and any x ∈ Rn,
i.e., R = ||x − x̄||2. A radial function ϕ(x) = ϕ(||x − x̄||2) depends only on the
distance between x and fixed point x̄. Some well-known radial basis functions are
Gausian, Hardy Multiquadric, Inverse Multiquadric and Inverse Quadric. One of the
RBFs that is of our interest, is Hardy Multiquadric radial function ϕ(R) =

√
R2 + c2,

where c is known as the ”shape parameter”, and describes the relative width of the
RBF functions about their centers. In practice, tuning of this parameter can dra-
matically effect the quality of the solution obtained. However, increasing the value of
the shape parameter makes the collocation matrices significantly more ill-conditioned
and smaller values of this parameter, produce the better approximation. Schaback
in [34], describes this phenomenon as the uncertainty relation; better conditioning is
associated with worse accuracy, and worse conditioning is associated with improved
accuracy. Accordingly, much research has been directed toward finding effective meth-
ods of optimization, see [31, 37]. Despite research done by many scientists to develop
algorithms for selecting the values of c which produce most accurate interpolation,
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the optimal choice of shape parameter is still an open question.
Now let us consider a PDE in the form of{

Lu = f, in Ω;
u = g, on ∂Ω.

(2.1)

Both given f and g : Rn → R are sufficiently smooth. Let x̄1, x̄2, . . . , x̄N be a given set
of scattered nodal points in the domain and on the boundary. The unknown solution
u is approximated via

u(x) ≈ ũ(x) =

N∑
i=1

αiϕi(x),

where ϕi(x) = ϕ(||x − x̄i||2), i = 1, 2, . . . , N are constructed on the set of nodal
points and αi, i = 1, 2, . . . , N are the unknown coefficients to be determined. For the
spatial discretization, we consider x1, x2, . . . , xN nodal points, where x1, x2, . . . , xM
are located in the domain and xM+1, xM+2, . . . , xN on the boundary of the problem.
After substituting ũ in the PDE (2.1), the unknown scalars αi are chosen so that the
following problem is interpolated at the points xj , 1 ≤ j ≤ N , as follows{

Lũj = fj , j = 1, 2, . . . ,M,
ũj = gj , j = M + 1,M + 2, . . . , N,

(2.2)

where fj = f(xj), gj = g(xj) and ũj = ũ(xj), which results in the following linear
system of equations

Aα = b, (2.3)

where Aj,i = L(ϕi(xj)), bj = fj , j = 1, 2, . . . ,M and Aj,i = ϕi(xj), bj = gj , j =
M + 1,M + 2, . . . , N and i = 1, 2, . . . , N and α = [α1, α2, . . . , αN ]T . It can be shown
that the matrix A is invertible for distinct set of scattered points in the case of
multiquadric but, it is ill-conditioned. For a fixed number of interpolation points the
condition number of A depends on the shape parameter c. So, in practice the values
of c must be adjusted with the number of interpolating points in order to produce
a well-conditioned interpolation matrix. Therefore, we choose experimentally a good
value of the shape parameter c which yields the least residual norm.

3. Numerical approximation for the Problem I

In this section, an iterative method which is based on the combination of the RBF
collocation and the FD methods is introduced to obtain the approximate solution of
Problem I. For concreteness, we first present our proposed method for the special
case of the Problem I with r = 2, i.e., two-phase boundary problem (1.2) and later
expand it for the general case, i.e., an arbitrary value of r. Similarly, one can apply
the proposed method for the one phase obstacle problem, too. Also, this method
is capable for obtaining the approximate solution of the FBP (1.7) which will be
described. For this means, first we need to introduce some basic notations.

Consider an uniform mesh on Ω ⊂ R2 and for simplicity assume that Ω = [−1, 1]×
[−1, 1] and ∆x = ∆y = h. Let

pi,j = (−1 + (i− 1)h,−1 + (j − 1)h), i, j = 1, . . . ,m, h =
2

m− 1
, N = m2.
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Set

xl = pi,j , i, j = 1, . . . ,m,

and

ūl =
1

4
[u(pi−1,j) +u(pi+1,j) +u(pi,j−1) +u(pi,j+1)], i, j = 2, . . . ,m−1, (3.1)

where l = j + (i − 1)m and ūl = ū(xl). Note that for the one-dimensional case, we
define

pi = −1 + (i− 1)h, i = 1, . . . ,m, h =
2

m− 1
, N = m,

xl = pl, l = 1, . . . ,m,

ūl =
1

2
[u(pl−1) + u(pl+1)], l = 2, . . . ,m− 1. (3.2)

Consider xl, l = 1, 2, . . . , N , as collocation points. Let M of them are located in the
domain and N −M of them on the boundary of the problem. The unknown solution
u can be approximated by a linear combination of the form

u(x) ≈ ũ(x) =

N∑
i=1

αiϕi(x), (3.3)

where ϕi(x) =
√
c2 + ||x− x̄i||2 is the Multiquadric RBF and x̄i, i = 1, 2, . . . , N ,

are the centers of RBF. Also, αi, i = 1, 2, . . . , N are the unknown coefficients to be
determined. Note that these centers and collocation points may or may not the share
common points. Here, we consider both of them the same.

The major difficulty in solving the FBPs numerically is the nonlinearity nature
of problem due to the unknown free surface. Hence, we present an iterative method
which is based on combination of the RBF collocation and the FD methods to obtain
an approximate solution of this problem. This method has been described as follows.

For N −M nodal points are located on the boundaries (xl ∈ ∂Ω), the Dirichlet
boundary condition is imposed by

ũk+1
l = gl, (3.4)

at the iteration k+ 1. For the nodes located in the interior of the domain, we present
two methods A and B for the two-phase problem (1.2) and the free boundary problem
(1.7), respectively.
Method A
Consider the two-phase problem (1.2). It is clear that in the interior points of domain,
this problem is equivalent with the following problem ∆u = λ+, if u > 0;

∆u = −λ−, if u < 0;
u = 0, otherwise.

(3.5)
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By applying the FD discritization on the system (3.5), this equation transfers to
u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1) − 4u(pi,j) = λ+

l h
2, if ūl −

λ+
l
h2

4
> 0;

u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1) − 4u(pi,j) = −λ−l h
2, if ūl +

λ−
l
h2

4
< 0;

u(pi,j) = 0, otherwise;

(3.6)

where λ+
l = λ+(xl), λ

−
l = λ−(xl). Now we can combine the equation with the RBF

collocation method and obtain an iterative method at the iteration k for the each
node located in the domain (xl in Ω) as{

ũk+1
l = 0, if ûkl ≤ 0 and ˆ̂ukl ≥ 0;

∆ũk+1(x) |x=xl= λ+
l χûkl >0 − λ−l χˆ̂ukl <0, otherwise;

(3.7)

where ũk+1
l = ũk+1(xl) =

N∑
i=1

αk+1
i ϕi(xl),

ûkl = ūkl −
λ+
l h

2

4
, ˆ̂ukl = ūkl +

λ−l h
2

4

and

ūkl =
1

4
[uk(pi−1,j) + uk(pi+1,j) + uk(pi,j−1) + uk(pi,j+1)], k = 0, 1, . . . , (3.8)

i, j = 2, 3, . . . ,m− 1, l = j + (i− 1)m.

System (3.7), can be reduced to the following simple form

(χûk
l
≤0.χ ˆ̂uk

l
≥0)ũk+1

l + (χûk
l
>0 + χ ˆ̂uk

l
<0)∆ũk+1(x) |x=xl= λ+

l χûk
l
>0 − λ

−
l χ ˆ̂uk

l
<0, xl ∈ Ω.

Putting equations (3.4) and (3.7) together results in a linear system of equations. By choosing
a proper initial guess and solving this linear system at each iteration, the approximate
solution of the two-phase problem is obtained. An sketch of this iterative method is given
in the Algorithm 3.1.
Method B
Consider the FBP (1.7). In the interior points of domain, this problem is equivalent with

∆u = −λ+u, if u > 0;
∆u = 0, if u < 0;
u = 0, otherwise.

(3.9)

By using the FD discritization, the system (3.9) can be written as
u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1) − 4u(pi,j) = −λ+

l h
2u(pi,j), if ūl

1−
λ
+
l
h2

4

> 0;

u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1) − 4u(pi,j) = 0, if ūl < 0;

u(pi,j) = 0, otherwise.

(3.10)

Let M̄ = max
xl∈Ω

√
λ+
l . It is easy to show that for h < 2/M̄ one can obtain 1− λ+

l
h2

4
> 0, for

every xl in Ω. Thus the system (3.10), is reduced to
u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = −λ+

l h
2u(pi,j), if ūl > 0;

u(pi−1,j) + u(pi+1,j) + u(pi,j−1) + u(pi,j+1)− 4u(pi,j) = 0, if ūl < 0;
u(pi,j) = 0, if ūl = 0.

(3.11)
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Hence, For each node located in the domain (xl in Ω), we have the following iterative
procedure by combining the FD and RBF collocation methods{

ũk+1
l = 0, if ūkl = 0;

∆ũk+1(x) |x=xl= −λ
+
l ũ

k+1
l χūk

l
>0, otherwise;

(3.12)

where k = 0, 1, 2, . . ..
System (3.12), can be transferred to the following simple form

(χūk
l

=0)ũk+1
l + (χūk

l
>0 + χūk

l
<0)∆ũk+1(x) |x=xl= −λ

+
l ũ

k+1
l χūk

l
>0, xl ∈ Ω.

Putting equations (3.4) and (3.12) together results in a linear system of equations. By choos-
ing a proper initial guess and solving this linear system at each iteration, the approximate
solution of the FBP is obtained.
Two above methods are summarized as the following algorithm.

Algorithm 3.1.

step 1: Choose an initial guess as u0
l =

{
0, if xl in Ω;
gl, if xl on ∂Ω

step 2: For k = 0, 1, 2, . . ., until convergence, Do
step 3: Compute ūkl from equation (3.8)
step 4: Solve the linear system obtained from method A or B

step 5: Set the approximate solution ũk(x) =
N∑

i=1:N

αki ϕi(x), where

αk = (αk1 , α
k
2 , . . . , α

k
N )T is the solution obtained from step 4

step 6: Put uk = ũk

step 7: EndDo

Now consider the Problem I. The above results can be generalized for an arbitrary value
of r as follows.
Set φi,l = φi(xl), fi,l = fi(xl) and ui,l = ui(xl) for i = 1, 2, . . . , r. Let

ūkw,l =
1

4
[ukw(pi−1,j) + ukw(pi+1,j) + ukw(pi,j−1) + ukw(pi,j+1)],

k = 0, 1, . . . ; i, j = 2, 3, . . . ,m− 1; l = j + (i− 1)m,

and

ûkw,l = ūkw,l −
fw,lh

2

4
−
∑
p6=w

ūkp,l,

at the iteration k with w = 1, 2, . . . , r. For the nodal points located on the boundaries
(xl ∈ ∂Ω), the Dirichlet boundary condition is imposed by

ũk+1
i,l = φi,l, i = 1, 2, . . . , r, (3.13)

and for nodes which are located in the interior of the domain, we have{
ũk+1
i,l = 0, if ûki,l ≤ 0; i = 1, 2, . . . , r.

∆ũk+1
i (x) |x=xl= fi,l, otherwise;

(3.14)

Putting equations (3.13) and (3.14) together results in the r linear system of equations. The
new iterative method for an arbitrary value of r is described in the following algorithm.

Algorithm 3.2.
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step 1: Choose an initial guess as u0
i,l =

{
0, if xl in Ω; i = 1, 2, . . . , r,
φi,l, if xl on ∂Ω

step 2: For k = 0, 1, 2, . . ., until convergence, Do
step 3: Compute ûki,l, for i = 1, 2, . . . , r
step 4: Solve the linear systems obtained from (3.13) and (3.14)

step 5: Set the approximate solution ũki (x) =
N∑

j=1:N

αki,jϕj(x), where

αki = (αki,1, α
k
i,2, . . . , α

k
i,N )T , i = 1, 2, . . . , r are the solutions obtained from

step 4
step 6: Put uk = ũk

step 7: EndDo

4. Numerical approximation for the Problem II

In this section we will explain how to apply the new method to obtain the numerical
solution of Problem II as κ tends to∞. At first, we consider the case fi(x, u(x)) = ui(1−ui)
with two components. Then this method can be generalized for the general case with r
component. After that, we will explain that in which way the method can be modified for
the case fi(x, u(x)) = 0.

Consider the following problem

d2∆v − d1∆u = λu(1− u)χu>0 − λv(1− v)χv>0. (4.1)

Similar to the Method A and the Method B in the Section 3, we apply our method
for solving (4.1). It is easy to show that by employing the second order, centred, finite
difference scheme on equation (4.1), we obtain quadratic equation with respect to u(xi, yj)
and v(xi, yj). With regarding the properties of solutions, free boundaries and segregated
state of φi in Problem II, we drive our scheme.
Method C
Set

ûl =
λ− 4d1

h2 +
√

(λ− 4d1
h2

)2 − 4λ( 4d2
h2 v̄

k
l −

4d1
h2 ū

k
l )

2λ
(4.2)

and

v̂l =
−λ+ 4d2

h2 +
√

(λ− 4d2
h2 )2 + 4λ( 4d2

h2 v̄
k
l −

4d1
h2 ū

k
l )

2λ
. (4.3)

The boundary conditions of the Problem II are imposed similar to Method A. But for
the nodes located in the interior of the domain by combining the RBF collocation and the
FD methods, we have{

ũk+1
l = 0, if ûkl ≤ 0;

∆ũk+1(x) |x=xl= ukl (1− ukl ), otherwise;
(4.4)

and

{
ṽk+1
l = 0, if v̂kl ≤ 0;

∆ṽk+1(x) |x=xl= vkl (1− vkl ), otherwise.
(4.5)
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Now the generalization of the method for an arbitrary value of r is as follows. Let

ûki,l =
−λ+ 4di

h2 +
√

(−λ+ 4di
h2 )2 − 4λ(

∑
p6=i

4dp
h2 ū

k
p,l −

4di
h2 ū

k
i,l)

2λ
.

For the nodes located in the interior of the domain, we have{
ũk+1
i,l = 0, if ûki,l ≤ 0; i = 1, 2, . . . r,

∆ũk+1
i (x) |x=xl= uki,l(1− uki,l), otherwise.

(4.6)

The algorithm for this case is given as follows.

Algorithm 4.1.

Choose an initial guess as u0
i,l =

{
0, if xl in Ω; i = 1, 2, . . . , r,
φi,l, if xl on ∂Ω

step 2: For k = 0, 1, 2, . . ., until convergence, Do
step 3: Compute ûki,l, for i = 1, 2, . . . , r
step 4: Solve the linear systems obtained from (3.13) and (4.6)

step 5: Set the approximate solution ũki (x) =
N∑

j=1:N

αki,jϕj(x), where

αki = (αki,1, α
k
i,2, . . . , α

k
i,N )T .

i = 1, 2, . . . , r are the solutions obtained from step 4
step 6: Put uk = ũk.
step 7: EndDo

Now, we can apply a similar method for Problem II when fi(x, ui(x)) = 0 and κ→∞.
Method D
Set

ûki,l = ūki,l −
∑
p 6=i

ūkp,l, i = 1, 2, . . . , r.

For the interior nodes of domain we have{
ũk+1
i,l = 0, if ûki,l ≤ 0; i = 1, 2, . . . r,

∆ũk+1
i (x) |x=xl= 0, otherwise.

(4.7)

5. Numerical experiments

In this section, some different numerical examples are presented to illustrate the effective-
ness of the new method to obtain the numerical solution of the FBPs. Examples 5.1-5.4 and
5.5-5.6 show the numerical solutions of Problem I and Problem II for different values of
r with a good accuracy, respectively. For the tests reported in this section, we adopt exper-
imentally a good value of the parameter c for new method which yields the least residual
norm. A good value of parameter c for the examples 5.1 and 5.2 is depicted in Figure 1. All
the numerical experiments were computed with some MATLAB codes.

Example 5.1. For the first test consider the following one-dimensional two-phase equation{
u′′ = 8χ{u>0} − 8χ{u<0}, x ∈ (−1, 1)
u(1) = 1, u(−1) = −1,
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with the exact solution

u∗(x) =


4x2 − 4x+ 1, 0.5 ≤ x ≤ 1,
0, −0.5 ≤ x ≤ 0.5,
−4x2 − 4x− 1, −1 ≤ x ≤ −0.5.

As it can be seen from Figure 1, a good value of c for this example is almost 0.6 with m = 21
that yields the least RMS residual norm, where

||r||RMS =

√√√√ 1

N

N∑
i=1

r2(xi).

We apply Algorithm 3.1 to obtain the approximate solution of this problem. Numerical
results are shown in Table 1 for equidistance collocation points with m = 21, 121 and 201.
In this table

||e||∞ = max
1≤i≤N

|u(xi)− u∗(xi)|

and

eRMS =

√√√√ 1

N

N∑
i=1

(u(xi)− u∗(xi))2.

As it can be seen from this table, the numerical solution is obtained with a good accuracy.
Apply Algorithm 3.1 for this problem the final solution is obtained after 4 iterations which
is depicted in the Figure 2, with m = 21.

Table 1. Numerical results for Example 5.1.

m c Iteration ||e||∞ eRMS

21 0.6 4 2.4e− 03 9.2345e− 04
121 0.09 29 1.7453e− 04 8.6393e− 05
201 0.09 49 2.8768e− 05 1.2547e− 05

Example 5.2. [15] Consider the following problem{
u′′ = 2χ{u>0} − χ{u<0}, x ∈ (−1, 1),
u(1) = 1, u(−1) = −1.

According to Figure 1, a good value of the shape parameter for this example, is almost
c = 0.4. We apply the Algorithm 3.1 for obtaining the approximate solution of this problem
with m = 11 and c = 0.4. The final solution of this example is depicted in the Figure 3.

Example 5.3. [15] The third test is the following 2D two-phase problem

∆u = 1χ{u>0} − 1χ{u<0}, (x, y) ∈ (−1, 1)2,

g(x, y) =


( 1−x

2
)2, −1 ≤ x ≤ 1, y = 1,

y2, 0 ≤ y ≤ 1, x = −1,
−y2, −1 ≤ y ≤ 0, x = −1,
−( 1−x

2
)2, −1 ≤ x ≤ 1, y = −1,

0, −1 ≤ x ≤ 1, x = 1.
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Figure 1. The ||r||RMS versus different values of c for Example 5.1
and Example 5.2.
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Figure 2. The convergence history of the new method for Example
5.1 with m = 21 and c = 0.6.

We apply Algorithm 3.1 to obtain the numerical solution of this example with m = 31 and
c = 0.4. The final solution obtained after 14 iterations. In the Figure 4, the obtained solution
in different level sets and the numerical solution are shown.

Example 5.4. Consider the following problem

∆u = −uχ{u>0}, (x, y) ∈ (−4, 4)2,
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Figure 3. The convergence history of the new method for Example
5.2 with m = 11 and c = 0.4.
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Figure 4. the level sets of solution (left), the numerical solution (right)
with m = 31 and c = 0.4 for Example 5.3.

with the analytical solution

u(x, y) =

{
J0(r), if r < rc,
A ln rc

r
, ifr ≥ rc,

where r2 = x2 + y2 and rc ≈ 2.404826 is the first zero of J0(r) and A ≈ 1.248459.
By applying Algorithm 3.1 to obtain the numerical solution of this problem, after 6 iterations,
we obtain ||e||∞ = 5.2586e − 04 and eRMS = 2.0659e − 04 with m = 31 and c = 0.4. The
numerical solution of problem, the level set of solution and the error solution are depicted
in Figure 5. As it can be seen from the figures, the numerical results shows a good accuracy
of the new method.

Example 5.5. Consider the Problem II with r = 4, f1 = 8, f2 = 6, f3 = 2 and f4 = 1.
Let Ω = [−1, 1] and boundary values of φi, i = 1, 2, 3, 4, be as follows
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Figure 5. The numerical solution of problem (left), the level set of so-
lution (middle), the error solution (right) for Example 5.4.

φ1(x, y) =

{
1− x2, x ∈ [−1, 1], y = 1,
0, elsewhere,

φ2(x, y) =

{
1− y2, y ∈ [−1, 1], x = 1,
0, elsewhere,

φ3(x, y) =

{
1− x2, x ∈ [−1, 1], y = −1,
0, elsewhere,

φ4(x, y) =

{
1− y2, y ∈ [−1, 1], x = −1,
0, elsewhere,

We apply Algorithm 3.2 with c = 0.05 and m = 21. The contours of solution and the surface
of u1 + u2 + u3 + u4 are depicted in Figure 6.

Example 5.6. For the last test, consider the equation (4.1) with Ω = [0, 1], λ = 1, d1 = 1.5
and d2 = 1. The steady boundary values for u(x, y, t) and v(x, y, t) are defined by

φ(x, 0, t) =

{
0.5− 2.5x, x ∈ [0, .2], φ(0, y, t) = 0.5,
0, x ∈ [0.2, 1],

φ(x, 1, t) =

{
0.5− 5

8
x, x ∈ [0, .8], φ(1, y, t) = 0,

0, x ∈ [0.8, 1],

ψ(x, 0, t) =

{
0, x ∈ [0, .2], ψ(0, y, t) = 0,
− 1

8
+ 5

8
x, x ∈ [0.2, 1],

ψ(x, 1, t) =

{
0, x ∈ [0, .8], ψ(1, y, t) = 0.5.
−2 + 2.5x, x ∈ [0.8, 1],

We apply Algorithm 4.1 with c = 0.1 and m = 21. The surface of u+ v is depicted in Figure
7.
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Figure 6. The surface u1 + u2 + u3 + u4 (left), the contours of solution
(right) for Example 5.5.
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Figure 7. The surface u+ v for Example 5.6.

6. Conclusion

The major difficulty in solving FBPs is the nonlinearity nature of the problem. In this
paper an efficient iterative method is proposed for obtaining the numerical solution of the
FBPs. This method is based on RBF collocation method and finite difference scheme.
The most important advantage of this method is its mesh free nature. Numerical studies
demonstrated, by choosing a good shape parameter, the new method is fast, accurate and
convergent.
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