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Abstract A predator-prey model was extended to include nonlinear harvesting of the predator

guided by its population, such that harvesting is only implemented if the predator
population exceeds an economic threshold. Theoretical results showed that the har-
vesting system undergoes multiple bifurcations, including fold, supercritical Hopf,
Bogdanov-Takens and cusp bifurcations. We determine stability and dynamical be-

haviors of the equilibrium of this system. Numerical simulation results are given to
support our theoretical results.
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1. Introduction

Mathematical models play a vital role in investigating the optimal management
and exploitation of renewable resources. The dynamical relationships between species
and their complex properties are the heart of many ecological and biological processes.
Predator-prey dynamics are well studied in the process of control of some ecosystems.
Typically, a predator-prey model focuses on interactions between two species tak-
ing into account some aspects that are considered nodal to explain the dynamics.
Recently, nonsmooth dynamic systems have been used to study threshold policies in
various applied fields [9, 14, 15, 19] such as plant disease control and human infectious
disease control. A number of researchers have examined the influence of harvesting
strategies on the interaction of different species [3, 8]. For example, predator-prey
models with linear and constant harvesting regimes were considered by researchers
[7, 9]. Continuous harvesting models have been widely studied but their assumptions
are questionable since regardless of the population of the predator and prey, they may
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lead to the extinction of the predator or the prey. Predator-prey models with different
functional responses or (and) harvesting are refined so as to better reflect the specific
characteristics of the different populations or economical need. The overexploitation
of some fish stocks may have consequences for the whole ecosystem which are diffi-
cult to be forecasted, and may eventually lead to depletion of some species, and thus
decreasing yields, up to the danger of unexpected extinction of resources. For these
reasons, central institutions usually enforce forms of regulation either by imposing
harvesting restrictions, such as constant efforts, individual fishing quotas, taxations,
or by limiting the kinds of fish to be caught or the regions where exploitation is al-
lowed (see e.g. [4, 6]). The objective is to maximize the monetary social beneft as well
as conservation of the ecosystem. More and more complex bifurcation phenomena are
discovered and studied in predator-prey models, see, for example, homoclinic bifurca-
tion and Hopf bifurcations of codimension 1 in [17], cusp bifurcation of codimension
2 in[10, 18], Bogdanov-Takens bifurcation of codimension 3 (cusp case) in [11, 22],
Bogdanov-Takens bifurcation of codimension 3 (focus case) in [18], Bogdanov-Takens
bifurcation of codimension 3 (saddle case) in [5], Hopf bifurcation of codimension 2
in [11], etc. In this work we will use the term complexity to describe the ecological
complexity found in nature as well as the of dynamical complexity of the models.
In recent years, a significant number of the published papers on the mathematical
Continuous and discrete time models of biology, physics, power electrical system,...
discussed the systems of differential equations and the associated numerical methods.
Mathematical models on prey predator systems create a major interest during the
last few decades. Study of such system with discrete models and continuous models
can be found in [10, 17, 20, 21]. In this paper werely heavily on advanced numerical
methods [1], namely numerical continuation to obtain results that cannot be obtained
analytically. Numerical bifurcation analysis techniques are very powerful and efficient
in physics, biology, engineering, and economics [9, 12, 13, 17]. In this paper, we ex-
tend a predator-prey model to include nonlinear harvesting of the predator population
and extend the simple ordinary differential equation model into a predator population
guided harvesting model in which the harvesting strategy is implemented according to
an economic threshold. We investigate the dynamical complexities of a predator-prey
model with switching between a traditional model (the free system) and a model with
a nonlinear harvesting regime for the predator population (the harvesting system).
This system first was studied in [16], in which some local bifurcations were studied
analytically. The system is shown as follows:

dx

dt
= rx(1− x

K
)− βxy,

dy

dt
= kβxy − dy − qy

1 + wy
,

(1.1)

where x and y represent the densities of the prey and the predator, respectively, r,
K, β, q, w, k and d are positive constants. The prey grows logistically with carrying
capacity K and intrinsic growth rate r in the absence of predation. The term qy

1+wy

which is a saturation function, represents the harvesting of the predator. w is a suit-
able constant and q is the rate of harvesting. The parameter β is the per-capita rate
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of predation of the predator, k is a constant conversion rate of eaten prey into new
predator abundance and d is the death rate of the predator.

This paper is organized as follows: In section 2, we consider the mathematical model
and discussed some basic dynamical results like positivity, boundedness of solution
and existence of possible equilibrium and stability of equilibrium In section 3, Hopf
bifurcation, cusp bifurcation and Bogdanov-Takens bifurcation of the interior equi-
librium point of the model system is discussed. Numerical simulation results are
included to support our analytical results in section 4. The paper concludes with a
brief discussion and we summarize our results in section 5.

2. Equilibria of the bioeconomic model and its stability analysis

The system (1.1) has trivial equilibrium point E0 = (0, 0), axial equilibrium point

E1 = (γ, 0) and co-existing equilibrium point E∗ = (x∗, y∗) where x∗ = δ+(αδ−β)ξ
β(1−c′)−δ

and y∗ = ( 1+αξ+x∗
(1−c′) )(1− x∗

γ ). The Jacobian matrix of system (1.1) at (x, y) takes the

form:

J =

(
1− 2x

γ − (1−c′)(1+αξ)y
(1+αξ+x)2 − (1−c′)x

1+αξ+x
βy[(1−c′)(1+αξ)−ξ]

(1+αξ+x)2
β[(1−c′)x+ξ]

1+αξ+x − δ

)
.

At trivial equilibrium point (0, 0), the Jacobian matrix is given by

J =

(
1 0

0 βξ
1+αξ − δ

)
.

It has always one positive eigenvalue 1 and other eigenvalue βξ
1+αξ − δ.

Lemma 2.1. The equilibrium E0 = (0, 0) of the system (1.1) is always a saddle point

if βξ
1+αξ < δ, and the equilibrium E0 is unstable if βξ

1+αξ > δ.

At the axial equilibrium point (γ, 0), the Jacobian matrix is given by

J =

(
−1 − (1−c′)γ

1+αξ+γ

0 β[(1−c′)γ+ξ]
1+αξ+γ − δ

)
.

One negative eigenvalue is −1 and other eigenvalue is β[(1−c′)γ+ξ]
1+αξ+γ − δ.

Lemma 2.2. Equilibrium point Eγ = (γ, 0) is saddle for β[(1−c′)γ+ξ]
1+αξ+γ > δ and stable

for β[(1−c′)γ+ξ]
1+αξ+γ < δ.

At the co-existing equilibrium point ( δ+(αδ−β)ξ
β(1−c′)−δ , (

1+αξ+x∗
(1−c′) )(1− x∗

γ )), the Jacobian

matrix is given by

J =

(
x∗
γ ( γ−x∗

1+αξ+x∗
− 1) − (1−c′)x∗

1+αξ+x∗
βy∗[(1−c′)(1+αξ)−ξ]

(1+αξ+x∗)2
0

)
.
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Theorem 2.3. When 1 > c′ and β[(1−c′)γ+ξ]
1+αξ+γ = δ, the degenerate equilibrium point

Eγ = (γ, 0) of the system (1.1) is a saddle-node.The system (1.1) has trivial equilib-
rium point E0 = (0, 0), axial equilibrium point E1 = (K, 0) and co-existing equilibrium
point E∗ = (x∗, y∗) where x∗ = d

kβ and y∗ = r
β (1−

d
kβK ).

The Jacobian matrix of system (1.1) at (x, y) takes the form:

J =

(
r − 2rx

K − βy −βx
kβy kβx− d− q

(1+wy)2

)
.

2.1. Trivial equilibrium point. At trivial equilibrium point (0, 0), the Jacobian
matrix is given by

J =

(
r 0
0 −(d+ q)

)
.

It has always one positive eigenvalue r and other eigenvalue −(d+ q).

Lemma 2.4. The equilibrium E0 = (0, 0) of system (1.1) is always a saddle point.

2.2. Axial equilibrium point. At the axial equilibrium point (K, 0), the Jacobian
matrix is given by

J =

(
−r −βK
0 kβK − d− q

)
.

One negative eigenvalue is −r and other eigenvalue is kβK − d− q.

Lemma 2.5. Equilibrium point (K, 0) is saddle for kβK > d + q and stable for
kβK < d+ q .

2.3. Co-existing equilibrium point. At the co-existing equilibrium point ( d
kβ ,

r
β (1−

d
kβK )), the Jacobian matrix is given by

J =

( −rd
kβK − d

k

kr(1− d
kβK ) q

[1+wr
β (1− d

kβK )]2

)
.

One negative eigenvalue is −r and other eigenvalue is kβK − d − q. Now, let
traceJ |(x∗,y∗) = − rd

kβK + q
[1+wr

β (1− d
kβK )]2

, and detJ |(x∗,y∗) = − rdq
kβK[1+wr

β (1− d
kβK )]2

+

dr
(1− d

kβK )

Lemma 2.6. Define Θ = traceJ |(x∗,y∗), ∆ = detJ |(x∗,y∗) then the following state-
ments hold:
(a) choose Θ > 0, and ∆ > 0. The eigenvalues of J |(x∗,y∗) are both either real number
with the positive signs or complex conjugate with non-zero positive real part. There-
fore the equilibrium point (x∗, y∗) in either case unstable node or unstable spiral.
(b) choose Θ < 0, and ∆ > 0. The eigenvalues of J |(x∗,y∗) are both either real num-
bers with the negative signs or complex conjugate with non-zero negative real part.
Therefore theequilibrium point (x∗, y∗) in either case stable node or stable spiral.
(c) we choose Θ < 0, or Θ < 0 and ∆ < 0 The eigenvalues of J |(x∗,y∗) are both real
numbers with opposite sign to each other. Therefore the equilibrium point (x∗, y∗) is
saddle node.



CMDE Vol. 9, No. 2, 2021, pp. 427-445 431

(d) we choose Θ = 0, and ∆ > 0. The eigenvalues of J |(x∗,y∗) are purely complex
conjugate to each other. Therefore the equilibrium point (x∗, y∗) is center.
(e) we choose Θ = 0, and ∆ < 0. The eigenvalues of J |(x∗,y∗) are both real numbers
with same magnitude and opposite sign. Therefore the equilibrium point (x∗, y∗) is
saddle node.

3. Bifurcations

The critical parameter value at which qualitative change of dynamics occur is
called bifurcation point. Qualitatively different dynamical behaviour may appear in
the model with the variation of model parameters. To identify the possible qualita-
tively different dynamical behaviour with the variation of parameters q, β,K, we do
bifurcation analysis of the system (1.1) with respect to q, β,K,.

3.1. The cusp and Bogdanov-Takens bifurcations analysis. We first prove the
unique positive equilibrium of the system (1.1) is a cusp of codimension 2, then dis-
cuss the Bogdanov-Takens bifurcation of system (1.1). Taking the transformation
x1∗ = x− x1, x2∗ = y − y1 and expand the model (1.1) in a power series around the
origin, we obtain


dx

dt
= a1x1∗ + b1x2∗ + p11x

2
1∗ + p12x1∗x2∗ + p22x

2
2∗ +O(∥x∥3),

dy

dt
= c1x1∗ + d1x2∗ + q11x

2
1∗ + q12x1∗x2∗ + q22x

2
2∗ +O(∥x∥3),

(3.1)

where

a1 =
∂f

∂x
|(x1,y1) = −r, b1 =

∂f

∂y
|(x1,y1) = −βK, c1 =

∂g

∂x
|(x1,y1) = 0,

d1 =
∂g

∂y
|(x1,y1) = kβK − d− q, p11 =

1

2

∂2f

∂x2
|(x1,y1) = − r

K
,

p12 =
∂2f

∂x∂y
|(x1,y1) = −β, p22 =

1

2

∂2f

∂y2
|(x1,y1) = 0 , q11 =

1

2

∂2g

∂x2
|(x1,y1) = 0,

q12 =
∂2g

∂x∂y
|(x1,y1) = kβ, q22 =

1

2

∂2g

∂y2
|(x1,y1) = qw.

Then we must have

a1 + d1 = 0,

a1d1 + b1c1 = 0.

We now use the following transformation

y1 = x1∗,

y2 = −rx1∗ − βKx2∗,
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Then model (3.1) reduces to


dy1
dt

= y2 + α11y
2
1 + α12y1y2 + α22y

2
2 +O(∥y∥3),

dy2
dt

= β11y
2
1 + β12y1y2 + β22y

2
2 +O(∥y∥3),

(3.2)

where

α11 = −1 + r

K
, α12 =

1

K
,α22 = 0, β11 = 2

r2

K
+

2r2qw

βK
+ rkβ,

β12 = −r
2β − 2r2qw

−βK
− kβ, β22 = − qw

βK
.

There exists a C∞ invertible transformation given by

z1 = y1 + (− 1

K
− qw

βK
)y21 ,

z2 = y2 −
qw

βK
y1y2.

such that model (3.2) reduces to


dz1
dt

= z2 +O(∥z∥3)),
dz2
dt

= ρ1z
2
1 + ρ2z1z2 +O(∥z∥3),

(3.3)

where ρ1 = β11, ρ2 = −a1
b1

(p12 + 2q22) + 2p11 + q12 = kβ − r
K − 2qwr

βk . Ifρ1ρ2 ̸= 0

(non-degeneracy condition) hence the equilibrium E∗
1 is a cusp of codimension 2.

Theorem 3.1. System (1.1) has a cusp point of codimension 2 at the equilibrium E1.

Theorem 3.2. If we choose q and β as bifurcation parameters, then the system (1.1)
undergoes Bogdanov-Takens bifurcation in a small neighborhood of E∗

1 .

Proof. Consider the following system
dx

dt
= rx(1− x

K
)− (β + λ1)xy = f(x, y),

dy

dt
= k(β + λ1)xy − dy − (q + λ2)y

1 + wy
= g(x, y),

(3.4)

where (λ1, λ2) is a parameter vector in a small neighborhood of (0, 0). In this case,
with the help of the transformation x = x1 + x∗1, y = x2 + y∗1 , q = q∗ + λ1 and
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β = β∗ + λ2. System (3.4) can be written as
dx1
dt

= p0(λ) + a2(λ)x1 + b2(λ)x2 + p′11x
2
1 + p′12(λ)x1x2 + p′22(λ)x

2
2 +O(∥x∥3),

dx2
dt

= q′0(λ) + c2(λ)x1 + d2(λ)x2 + q′11(λ)x
2
1 + q′12(λ)x1x2 + q′22(λ)x

2
2 +O(∥x∥3),

(3.5)

where
a2(λ) =

∂f
∂x |(x∗

1 ,y
∗
1 )

= −r, b2(λ) =
∂f
∂y |(x∗

1 ,y
∗
1 )

= −(β + λ1)K,

c2(λ) =
∂g
∂x |(x∗

1 ,y
∗
1 )

− 0, d2(λ) =
∂g
∂x |(x∗

1 ,y
∗
1 )

= k(β + λ1)K − d− (q + λ2),

p′11(λ) =
1
2
∂2f
∂x2 |(x∗

1 ,y
∗
1 )

= − r
K , p′12(λ) =

∂2f
∂x∂y |(x∗

1 ,y
∗
1 )

= −β + λ1,

p′22(λ) =
1
2
∂2f
∂y2 |(x∗

1 ,y
∗
1 )

= 0, q′11(λ) =
1
2
∂2g
∂x2 |(x∗

1 ,y
∗
1 )

= 0,

q′12(λ) =
∂2g
∂x∂y |(x∗

1 ,y
∗
1 )

= k(β + λ1), q′22(λ) =
1
2
∂2f
∂y2 |(x∗

1 ,y
∗
1 )

= (q + λ2w) and

p0(λ) = −λ1x∗1y∗1 , q0(λ) = −λ2 q
1+wy∗

1
. Making the affine transformation

y1 = x1, y2 = a2x1 + b2x2.

We have
dy1
dt

= p0(λ) + y2 + α11(λ)y
2
1 + α12(λ)y1y2 + α22(λ)y

2
2 +O(∥y∥),

dy2
dt

= q′0(λ) + c3(λ)y1 + d3(λ)y2 + β11(λ)y
2
1 + β12y1y2 + β22y

2
2 +O(∥y∥),

(3.6)

where

q0′(λ) = p0a2 + b2q0, c3 = b2c2 − a2d2, d3 = a2 + d2,

α11 =
p′22a

2
2

b2
− p′12a2

b2
+ p′11, α12 = −2p′22a2

b22
+
p′12
b2
, α22 =

p′22
b22
,

β11 = b2q
′
11 + a2(p

′
11 − q′12)−

a22(p
′
12 − q′22)

b2
+
p′22a

3
2

b22
,

β12 = −(2
p′22a

2
2

b22
− a2(p

′
12 − q′22)

b2
− q′12), β22 =

p′22a2
b22

+
q′22
b2
.

The functions q0′(λ), αkl, βkl, are smooth functions of λ. We have q′0(λ∗) = c3(λ
∗) =

d3(λ
∗) = 0. Now, we consider the following transformation

z1 = y1, z2 = p0(λ) + y2 + α11(λ)y
2
1 + α12(λ)y1y2 + α22y

2
2 +O(∥y∥).

This transformation brings (3.6) into the following
dz1
dt

= z2,

dz2
dt

= g00(λ) + g10(λ)z1 + g01(λ)z2 + g20(λ)z
2
1 + g11(λ)z1z2 + g02(λ)z

2
2 +O(∥z∥3),

(3.7)
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where g00(0) = 0, g10(0) = 0, g01(0) = 0, and z = (z1, z2). Furthermore, we also
have

g00(λ) = q0′(λ)− p0(λ)d3(λ) + ...,

g10(λ) = c3(λ) + α12(λ)q0′(λ)− β12(λ)p0(λ) + ...,

g01(λ) = d3(λ) + 2α22(λ)q0′(λ)− α12(λ)p0(λ)− 2β22(λ)p0(λ),

g20(λ) = β11(λ)− α11(λ)d3(λ) + c3(λ)α12(λ) + ...,

g02(λ) = α12(λ) + β22(λ)− α22(λ)d2(λ) + ...,

g11(λ) = β12(λ) + 2α11(λ) + 2α22(λ)c3(λ)− α12(λ)d3(λ) + ...,

correspondingly,

g00(λ
∗) = 0, g10(λ

∗) = 0, g01(λ
∗) = 0, g20(λ

∗) = β11(λ
∗),

g02(λ
∗) = α11(λ

∗) + β22, g11(λ
∗) = β12(λ

∗) + 2α11(λ
∗).

Again, we can write (3.7) as of the following form:



dz1
dt

= z2,

dz2
dt

= (g00(λ) + g10(λ)z1 + g20(λ)z
2
1 +O(∥z∥3))

+(g01(λ)z2 + (g11(λ)z1 +O(∥z∥2))z2 + (g02(λ) +O(∥z∥))z22
= µ(z1, λ) + ν(z1, λ)z2 +Φ(z, λ)z22 ,

(3.8)

where µ, ν, Φ are smooth functions and satisfy the following

µ(0, λ∗) = g00(λ
∗) = 0,

∂µ

∂z1
|(0,λ∗) = g10(λ

∗) = 0,

∂2µ

∂z21
|(0,λ∗) = g20(λ

∗) = β11(λ
∗) = ρ1 ̸= 0

ν(0, λ∗) = g01(λ
∗) = 0,

∂ν

∂z1
|(0,λ∗) = g11(λ

∗) = β11(λ
∗) + 2α11(λ

∗) = ρ2 ̸= 0.

Since µ(0, λ∗) = 0, ∂ν
∂z1

|(0,λ∗) = ρ2 ̸= 0 (due to the nondegeneracy assumption),
it follows from the Implicit function theorem that there exists a C∞ function z1
defined in a small neighbourhood of λ = λ∗ such that ϕ(λ∗) = 0, ν(ϕ, λ) = 0 for
any λ ∈ N(λ∗). We now use a parameter-dependent shift of co-ordinates in the
z1-direction to annihilate the z2 term on the RHS of the second equation of (3.8)

z1 = u1 + ϕ(λ), z2 = u2.
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The above transformation brings the system (3.8) to the following system

du1
dt

= u2,

du2
dt

= (h00(λ) + h10(λ)u1 + h20(λ)u
2
1 +O(∥u1∥3))

+(h01(λ)u2 + (h11(λ)u1 +O(∥u∥2))u2 + (h02(λ) +O(∥u∥))u22
= µ(u1, λ) + ν(u1, λ)u2 +Φ(u, λ)u22,

(3.9)

where u = (u1, u2),

h00 = g00 + g10ϕ+ ..., h10 = g10 + 2g20ϕ+ ...,

h20 = g20 + ..., h01 = g01 + g11ϕ+ ...,

h11 = g11 + ..., h02 = g02 + ....

The coefficient of u2 term on the RHS of the second equations of (3.9) is given by

h01 = ν(0, λ) = g01 + g11ϕ+O(∥ϕ∥2) = [d2 + 2α22q0′ − α12p0 − 2β22p0 + ...]

+[β12 + 2α11 + α22c2 − α12d2 + ...]ϕ.

Thus we have the following

h01(0, λ) = g01(λ
∗) = 0,

∂h01
∂ϕ

|(0,λ∗) = β12(λ
∗) + 2α11(λ

∗) = ρ2 ̸= 0.

Let for λ ∈ N(λ∗), ϕ(λ) ∈M . Then in the regionM , ϕ(λ) can be approximated by

ϕ(λ) ≈ −g01(λ)
ρ2

.

Thus, (3.9) reduces to the following
du1
dt

= u2,

du2
dt

= h00(λ) + h10(λ)u1 + h20(λ)u
2
1 + h11(λ)u1u2 + h02(λ)u

2
2 +O(∥u∥)3.

(3.10)

We now introduce a new time scale, defined by dt = (1 + ψu1)dτ , where ψ = ψ(λ) is
a smooth function to be defined later. With this transformation, (3.10) reduces to

du1
dτ

= u2(1 + ψu1),

du2
dτ

= h00 + (h10 + h00ψ)u1 + (h20 + h10ψ)u
2
1 + h11u1u2 + h02u

2
2 +O(∥u∥)3,

(3.11)

assume

ν1 = u1, ν2 = u2(1 + ψu1).
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then we obtain,
dν1
dτ

= ν2,

dν2
dτ

= l00(λ) + l10(λ)ν1 + l20(λ)ν
2
1 + l11(λ)ν1ν2 + l02(λ)ν

2
2 +O(∥ν∥)3,

(3.12)

where

l00(λ) = h00, l10(λ) = h10 + 2h00ψ(λ),

l20 = h20 + 2h00ψ(λ) + h00(λ)ψ(λ)
2,

l11(λ) = h11(λ), l02(λ) = h02 + ψ(λ).

Now, we take ψ(λ) = −h02(λ) in order to get rid of ν22 -term. We then have
dν1
dτ

= ν2,

dν2
dτ

= β1(λ) + β2(λ)ν1 + η(λ)ν21 + ζ(λ)ν1ν2 +O(∥ν∥)3,
(3.13)

where v = (v1, v2),

β1(λ) = h00(λ), β2(λ) = h10(λ)− 2h00(λ)h02(λ),

η(λ) = h20(λ)− 2h10(λ)h02(λ) + h202(λ)h00(λ) ̸= 0,

ζ(λ) = h11(λ) ̸= 0.

We now introduce a new time scale given by

t = |η(λ)
ζ(λ)

|τ.

With the new stable variables ξ1 = η(λ)
ζ2(λ)ν1 and ξ2 = η2(λ)

ζ3(λ)ν2 such that s = signη(λ)
ζ(λ) =

signη(λ∗)
ζ(λ∗) = ρ2

g20(λ∗) = ±1. This yields (3.13) into the form
dξ1
dτ

= ξ2,

dξ2
dτ

= µ1 + µ2ξ1 + ξ21 + sξ1ξ2 +O(∥ξ∥)3,
(3.14)

where

µ1(λ) =
η(λ)

ζ2(λ)
β1(λ), µ2(λ) =

η(λ)

ζ2(λ)
β2(λ).

The system (3.14) is locally topologically equivalent near the origin for small ∥µ∥ to
the system

dξ1
dτ

= ξ2,

dξ2
dτ

= µ1 + µ2ξ1 + ξ21 + sξ1ξ2,
(3.15)
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where s = ±1. We have obtained the generic normal from of the Bogdanov-Takens
bifurcation for the system(3.15)

rank(
∂(µ1, µ2)

∂λ
)λ=λ∗ = 2,

J =

∣∣∣∣∣ ∂µ1

∂λ2

∂µ1

∂λ1
∂µ2

∂λ2

∂µ2

∂λ1

∣∣∣∣∣ ̸= 0.

□
3.2. Hopf bifurcation. We study the existence of a Hopf bifurcation and stability
in a small neighborhood of E∗ when parameters q, β vary. In this section, we consider
system (1.1). It is easy to see that the determinant of J |E∗ is positive if

1

1− d
kβK

> − q

kβK[1 + wr
β (1− d

kβK )]2
.

Theorem 3.3. The system (1.1) undergoes Hopf bifurcation with respect to the pa-
rameter q around the equilibrium point (x∗, y∗), if q∗ = rd

kβK [1 + wr
β (1− d

kβK )]2.

Proof. The characteristic equation is given by

λ2 −Θλ+∆ = 0,

then the solutions of the characteristic equation give

λ1,2 =
1

2
tr(J |E∗)±

√
(tr(J |E∗))

2 − 4det(J |E∗).

We know that, if Θ = 0, then both the eigenvalues will be purely imaginary provided
∆ > 0. Therefore, from the implicit function theorem a Hopf bifurcation occurs where
a periodic orbit is created as the stability of the equilibrium point (x∗, y∗) changes.
Using the above two conditions it is found that the critical value of the Hopf bifurca-
tion parameter is q∗ = rd

kβK [1 + wr
β (1− d

kβK )]2.

It is clear that the given conditions:
(a) Θ = 0.
(b) ∆ > 0.
(c) dΘ

dq |q=q∗ ̸= 0. Guarantee the existence of Hopf bifurcation of the system (1.1)

around (x∗, y∗).
Obviously,

dΘ

dq
|q=q∗ =

1

[1 + wr
β (1− d

kβK )]2
̸= 0.

□
Theorem 3.4. Define β∗ = d−r

kx∗−y∗
+ 2rx

K(kx−y) +
q

(1+wy)2(kx−y) then a supercritical

Hopf bifurcation occurs around the positive equilibrium E∗.
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Proof. The proof is similar to that of the Theorem (3.3) and

dΘ

dβ
|β=β∗ = kx− y ̸= 0.

□

4. Numerical simulation

In this section we present computer simulation of some solutions of the system
(1.1). Beside verification of our analytical findings, these numerical solutions are very
important from practical point of view. The phase portraits were calculated with
ode45 of MATLAB. This is done by calculating the solutions forward and backward
in time for intial values located on a equally spaced grid in the first quadrant. We use
the following symbols in the bifurcation diagrams of this paper: LP:limit point, H:
Hopf bifurcations of an equilibrium point, Lpc: for the tangent bifurcations of limit
cycles, BT: for the Bogdanov-Takens, GH: for the Generalized Hopf, CP:cusp point.

4.1. Continuation Curve of Equilibrium Point (one-parameter bifurcation
diagram ). Analytical studies can never be completed without numerical verifi-
cation of the derived results. The main aim of this section is to study the pat-
tern of bifurcation that takes place as we vary the parameters β, q. This is ac-
tually done by studying the change in the eigenvalue of the Jacobian matrix and
also following the continuation algorithm. To start with, we consider a set of fixed
point initial solution, (x, y) = (10, 2), corresponding to a parameter set of values,
r = 0.8, k = 0.61,K = 15, β = 0.3, d = 0.5, q = 1.1, w = 1. The characteristics of
Hopf point, the limit cycle and the general bifurcation may be explored. To compute
curve of equilibrium from the equilibrium point we take parameter q = 1.1 as the free
parameter with fixed r = 0.8, k = 0.61,K = 15, β = 0.3, d = 0.5, w = 1. It is evident
that the system has two Hopf point in a neighborhood of E1, E∗, as predicted by the
theory, with purely imaginary eigenvalues ±i0.115727, ±i0.645976 and fold point in
a small neighborhood of E1. For this Hopf point the first Lyapunov coefficient is in
Table 1 indicating two supercritical Hopf bifurcation. It being negative implies that
a stable limit cycle bifurcates from the equilibrium when this loses stability. From
Figs. (4.2), (4.2), (6), (7), (8),(4.2), (4.2) it is evident that the system has a Hopf
point at:

label = H , x = ( 5.019706 1.774275 1.161328 )
First Lyapunov coefficient = -1.808411e-003
label = H , x = ( 11.522757 0.618177 2.603103 )
First Lyapunov coefficient = -1.558876e-001 .
label = LP, x = ( 11.678620 0.590468 2.603894 )
a=-2.768846e+000
label = BP, x = ( 15.000000 -0.000000 2.245000 )

To compute curve of equilibrium from the equilibrium point we take β = 0.3 as
the free parameter with fixed r = 0.8, k = 0.61,K = 15, β = 0.3, d = 0.5, w = 1. It is
evident that the system has a Hopf point in a small neighborhood of E∗ with purely
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imaginary eigenvalues ±i0.661621 and fold point in a small neighborhood of E1. For
this Hopf point the first Lyapunov coefficient ℓ1 is in Table 1 indicating a subercritical
Hopf bifurcation. From Figs. (4.2), (4.2), (4.2), (4.2), it is evident that the system
has a Hopf point

label = H , x = ( 4.344504 1.741618 0.326302 )
First Lyapunov coefficient = -1.725231e-003.
label = BP, x = ( 15.000000 -0.000000 2.245000 )
label = LP, x = ( 11.881131 1.285986 0.129348 )
a=-6.708999e+002
label = BP, x = ( 8.196721 0.000000 2.245000 )

By selecting Hopf point in the one-parameter bifurcation diagram of the equilib-
rium as initial point, we can plot the Limit cycles and bifurcations of limit cycles
starting from the Hopf point . Figs. (5), (6), (7).

When we take β = 0.3 as the free parameter :
Limit point cycle (period = 9.496654e+000, parameter = 3.263018e-001)
Normal form coefficient = -1.273765e-001
Limit point cycle (period = 9.496654e+000, parameter = 3.263018e-001)
Normal form coefficient = -1.262238e-001
Limit point cycle (period = 9.496654e+000, parameter = 3.263018e-001)
Normal form coefficient = -1.263172e-001

When we take q = 1.1 as the free parameter :
Limit point cycle (period = 9.726653e+000, parameter = 1.161328e-000)
Normal form coefficient = -1.546788e-001
Limit point cycle (period = 9.726653e+000, parameter = 1.161328e-000)
Normal form coefficient = -1.576773e-001

4.2. Two-parameter bifurcation diagram. By selecting Hopf point in the one-
parameter bifurcation diagram of the equilibrium as initial point, and taking K, q as
the free parameter. Fig. (4.2), (4.2).
label = BT, x = ( 11.845560 0.594337 15.242823 2.658935 0.000000 )
(a,b)=(4.224022e-002, 1.019134e-001)
label = GH , x = ( 3.319008 2.413592 34.972675 0.366546 0.434025 )
12=-2.618638e-005.

By selecting fold point in the one-parameter bifurcation diagram of the equilibrium
as initial point, and taking β, q as the free parameter. Fig. (10).
label = CP , x = ( 14.997674 0.001908 0.059019 0.040068 )
c=-1.787529e+002
label = BT, x = ( 11.779936 0.536928 0.319851 2.763966 )
(a,b)=(4.224022e-002, -1.105923e-001)
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label = BT, x = ( 12.421062 0.326629 0.421100 3.5694391)
(a,b)=(-4.156444e-002, 1.822598e-001).

We notice that the numerical bifurcat.

lable eigenvalues ℓ1, a free parameter
H λ1,2 = 2.00916e− 008± i0.661621 ℓ1 = −1.725231e+ 003 β
H λ1,2 = −2.12598e− 006± i0.115727 ℓ1 = −1.558876e+ 001 q
H λ1,2 = −4.63381e− 007± i0.645976 ℓ1 = −1.808367e− 003 q
LP λ1,2 = −0.387576, 2.45078e− 006 a = −6.708999e− 002 β
LP λ1,2 = −0.0150474, 1.79065e− 007 a = 2.768846e− 000 q

Table 1. One-parameter bifurcation points and eigenvalues.

lable eigenvalues normal form coefficient free parameter
BT λ1,2 = −1.017e− 015± i0.00031 4.1777e− 002,−9.75644e− 002 q,K
BT λ1,2 = −2.594e− 006,−1.545e− 010 −4.1564e− 0022, 1.8225e− 001 q, β
BT λ1,2 = 2.749e− 008± i4.668e− 008 4.2240e− 002,−1.1059e− 001 q, β
CP λ1,2 = −0.7997,−5.207e− 005 −1.7875e− 002 q, β
GH λ1,2 = −1.734e− 017± i0.6588 −2.6186e− 005 q,K
LPC µ1,2 = 1, 1 −1.2631e− 001 β
LPC µ1,2 = 1, 1 −1.5467e− 001 q
LPC µ1,2 = 5.139e− 008, 0.9991 5.2533e+ 000 q
Table 2. Two-parameter bifurcation points, limit cycles and eigenvalues.

(a) (b)

Figure 1. (a)Bifurcation diagram of the equilibrium in a small
neighborhood of E1, E∗ with the parameter β undergoing a su-
percritical Hopf bifurcation. (b)Trajectories of system (1.1), when
β = 0.316302. E∗ is locally asymptotically unstable.
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(a) (b)

Figure 2. (a)Trajectories of system (1.1), when β = 0.326302. E∗
is locally asymptotically stable. (b) Hopf bifurcation occurs at E∗
and bifurcating periodic solution for system (1.1) with β = 0.316302,
β = 0.326302

(a) (b)

Figure 3. (a) Fold curve in model (1.1), two-parameter bifurca-
tion diagram, when we take β, q as the free parameter with fixed
d, r,K,w, k in axis x, y. (b) Fold curve in model (1.1), two-parameter
bifurcation diagram, when we take β, q as the free parameter with
fixed d, r,K,w, k.

(a) (b)

Figure 4. (a) Continuation curves of equilibrium with the variation
of the parameter q in a small neighborhood of E1, E∗. (b) Trajectories
of system (1.1), when q = 1.161321.
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Figure 5. The family of limit cycles and bifurcations of limit cycles
starting from the Hopf point with the variation of the parameter
β = 0.326302.

.

Figure 6. The family of limit cycles starting from the Hopf point
with the variation of the parameter q = 2.603103.

Figure 7. Limit cycle bifurcation from supercritical Hopf point
HP = (11.522757, 0.618177).
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Figure 8. periodic solution for system (1.1) with q = 2.502894
.

(a) (b)

Figure 9. (a) Trajectories of system (1.1), when q = 1.151321.
(b)Periodic solution for system (1.1) with q = 1.151321, q =
1.161321.

Figure 10. Hopf curve in model (1.1), two-parameter bifurcation
diagram, when we take K, q as the free parameter with fixed
d, r, β, w, k.
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Conclusion

In this paper, we have studied the dynamics of a predator-prey system with har-
vesting of the predator guided by its population. We obtain conditions that aect the
persistence of the system. Local asymptotic stability of various equilibrium solutions
is explored to understand the dynamics of the model system. Based on the normal
form theory, we find that it is a cusp point of co-dimension 2 so that BogdanovTakens
bifurcation may occur. When the sum of the death rate and harvesting rate of the
predator is above a critical value the prey only equilibrium is stable, otherwise, it
is unstable and the positive equilibrium exists. It has at most one interior equilib-
rium which is a stable node or focus whenever it exists. Therefore, increasing the
linear harvesting rate can lead to the predators extinction after coexisting with the
prey as an equilibrium. In contrast, by the introduction of the nonlinear harvesting
term, our proposed model (1.1), can exhibit much richer behaviors, i.e., numerous
bifurcations may occur including the, Hopf,and Bogdanov-Takens bifurcations. In
summary, our analysis of the dynamics of the nonsmooth dynamics system can assist
decision-making in a variety of field but especially in fishery management to improve
implementation of harvesting strategies. For a specific problem, our finding suggests
that we can choose a reasonable economic harvest threshold and harvesting rate so
that the predator and prey populations can coexist and stabilize at ideal values. This
harvest regime can also be extended to other discontinuous harvesting policies and
the switching harvest policy can also be used to tackle other problems in ecology
which we leave for future work.
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